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Abstract

In this project, performance of different methods for the purpose of predicting the storyline of a television
series using fan theories, was analyzed. These methods involved different combinations of input data
and generative models and assessment was done using domain knowledge as well as overall coherence of
the generated sentences, by way of manual rating. Tools from the Stanford CoreNLP package were used
to perform actions such as tokenization, part-of-speech tagging, named entity recognition, co-reference
resolution and relation extraction and their performance over the data set was also analyzed. It was
found that relation extraction using Stanford OpenIE is a potential method of ridding the data set of all
noisy information while retaining the important details. It was also found that N-gram models perform
well with such noisy data as compared to other generative models such as Hidden Markov Models and
character-level LSTMs.

1 Introduction

Natural Language Generation (NLG) is the field of natural language processing that deals with text
generation on the basis of some input data. In the past, NLG systems have been developed for general
tasks such as lyrics/poetry generation[3] or image captioning[11] as well as personalized tasks such as
the STOP system that generates personalized pamphlets to help people quit smoking. The task of text
generation can be though of as printing out a sequence of words and/or phrases where what the possible
sequence can be is learned from a training corpus. While sophisticated machine learning techniques such
as recurrent neural networks have been developed to take into account the long-term dependencies in
this example text and thus generate more human-like sentences, teaching machines to understand and
reproduce the human language has been an uphill task and system has still not achieved perfection.
Also, since computers are unable to understand the meaning of the text being provided to them and
only learn how to generate sentences based on the sequential occurrence of words and phrases, mapping
information or domain knowledge of a particular textual database into the generated sentences has been
a challenge that has not yet been successfully tackled. Traditionally, generative models are trained with
a rich database in order to compensate for their lack of contextual understanding since a large database
will contain more phrases and tokens for the model to learn from, which will generally result in more flu-
ent sentences. However, performance of these models on a noisy and sparse database is yet to be analyzed.

Another part of natural language processing that goes hand in hand with text generation is information
extraction. Several open information extraction(IE) systems such as TextRunner, WOE and Stanford
OpenIE are now available to be used with any database and these allow one to extract relational tuples
from input sentences, along with performing other tasks such as tokenization, lemmatization, part-of-
speech tagging, named entity recognition, co-reference resolution and parse trees preparation. These
open systems have been extensively used as pre-processing steps for various tasks as they provide the
basic breakdown of a database in a single package and can often improve the performance of the NLP
models. A specific way in which the extracted relational tuples and other extrcated information can be
utilized is to remove noise from the database and improve the quality of the text being used to train
models and generate new sentences.

In this project, the task of sentence generation has been explored for a database made up of fan theories.
In the last 20 years, American entertainment, ranging from movies to television shows to comic books to
novels, has seen a colossal increase in its fan following, and with this increase, more and more people have
begun to keep a story going even when it is on hiatus, giving rise to fan-proposed theories of what the
future of a story might be. Three generative models, N-grams, Hidden Markov Models(HMM) and Long-
Short Term Memory(LSTM) recurrent neural networks have been explored and their results compared to
analyze how they perform for the proposed task. The Stanford OpenIE package has been used to extract
relational tuples while the CoreNLP package has been used to tokenize the input text, perform part-of-
speech tagging and find the named entities in the text. This information has been utilized in combination
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with the N-gram models to propose three different methods of sentence generation and assess how they
perform as compared to other baseline models. Frequency of occurrence of each character name from the
chosen show has been computed and sentence for the five most famous characters have been generated,
with each sentence generation task being seeded with the name of the character. Comparison has been
done on the basis of how understandable a sentence is and how much information it conveys. Human
subjects with both presence as well as absence of domain knowledge were asked to rate the sentences,
in order to obtain an understanding of how well each model maps domain knowledge in its generative
methodology.

2 Literature Review

The following section takes a look at some of the previous attempts at the task of sentence generation
using a particular database or for a particular purpose.

2.1 Rap Lyric Generator [3]

In this paper, two generative models, linear-interpolate trigram model and linear-interpolated quadgram
model have been trained on a data base of rap lyrics and have been used to generate new rap songs.
The authors have made use of a rhyming database, to prepare flatfiles of all the word-rhyming word
possibilities, to be incorporated into the system while generating lyrics so that whether the last words of
two consecutive lines rhyme or not can be checked. The models have been used in two ways, first when
no particular input song is given to a model and second, where a single input song is provided. It is
found that the linear-interpolated quadgram model outperforms the linear-interpolated trigram model in
that the sentences generated are more grammatically correct. Also, it is found that when an input song
is provided, the lyrics generated capture the general theme of the song better than when no input song is
given, in which case multiple themes seem to mash up with each other. The sentences have been ranked
on several manually defined metrics and for each possible sentence, multiple candidates are generated
and the candidate with the highest ranking is selected.

2.2 Information Extraction and Text Generation of news reports for a Swedish-
English bilingual spoken dialogue system [1]

This paper describes a dialog system which retrieves information from internet news reports related
to user queries in Swedish and English and generates their summaries. Lexicon-governed parsing has
been performed on the data and parsing output has been matched to a pre-defined event template.
Main events are identified with the help of verbal nouns, predicative adjectives and verbs that are not
combined with verbal subjects. The additional but less relevant information is identified with the help
of tense markers, conditional markers, modal verbs,and time and space adverbs. Once the templates
have been filled, grammar components of Swedish and English generate the final text. This bilingual
text generation has been shown to be better than text translation since the Swedish translation does not
suffer from lexical and syntactic interference.

2.3 A Probabilistic Approach to Text Generation of Human Motions ex-
tracted from Kinect Videos [5]

In this paper, text generation has been performed with multimedia information as input. Human motions
have been captured using a kinect camera and time series of the collected data has been extracted. After
application of several dimensionality reduction procedures, the observed time-series has been stored in a
data base with the intermediate representations which correspond to the semantics of human motions.
This information has been learned using machine learning, with visual information as the input and in-
termediate representation as the output. Once the intermediate information has been learned, sentences
describing human motion are collected and bi-gram models for each intermediate representation are pre-
pared. For each input time series, an intermediate representation is decided and from the corresponding
bi-gram model, the most likely combination of words is selected by applying dynamic programming to
the selected bi-gram.

2.4 Probabilistic Text Structuring: Experiments with Sentence Ordering [7]

This paper presents a method of ordering information that is particularly suitable for text-to-text gener-
ation tasks. An unsupervised probabilistic model that learns ordering constraints from a large corpus has
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been proposed. The model learns which sequences of features are likely to co-occur and makes predictions
concerning preferred orderings. Global coherence is obtained by greedily searching through the space of
possible orders. Instead of the best possible ordering, simply an acceptable ordering is constructed. The
method of evaluating these orderings has been proposed as an automated technique to find the closeness
or distance of the proposed orderings from the gold standards which are a collection of orders produced
by humans.

2.5 Lessons from a failure:Generating tailored smoking cessation letters[9]

This article talks about STOP, a natural language generation system that generates short tailored smok-
ing cessation letters, based on responses to a four-page smoking questionnaire. This questionnaire con-
sisted of questions on smoking habits and beliefs, previous attempts to quit, current medical problems
and so on. Processing was divided into the stages of document planning, micropanning and realiza-
tion. The document planner worked by classifying smokers into one of 7 categories and then running
a high-level category-specific schema that specified which sections and paragraphs should be included
in the letter. The category schema also specified the importance of different sections and paragraphs,
which influenced their length. It was found that the STOP system did not perform very well and was as
effective as a non-tailored letter in helping people quit smoking. The article also discusses how important
it is to state and evaluate negative results and failures and emphasizes on understanding the reasons for
the failure of a system, which they state is rare in AI related fields.

2.6 Hidden Markov Models suitable for Text Generation[10]

This paper presents the application of Hidden Markov Models for the purpose of text generation in the
polish language. Hidden markov models of orders varying form 1 to 7 were trained using a corpus of
reference polish text and the models were used to predict the next character in a sequence. For that
purpose, the three most probable words were found and one of them was chosen at random. For higher
values of k, it was found that performance was good with almost no misspelled words and this was
chalked up to the fact that polish words are mostly 6 to 7 characters long. It was concluded that while
HMMs can be used to generate text, they still perform poorly in the case of sentence generation.

2.7 Corpus-Guided Sentence Generation of Natural Images[11]

In this paper, a method that predicts the most likely nouns, verbs, scenes and prepositions that make up
the core sentence structure in order to properly describe an image has been proposed. This description
consists of a noun, a verb, a scene and a preposition that relates the objects to the scene, all of which have
been constrained to a predefined set. Using an image as the input, objects are detected using trained
algorithms. Given a set of objects in the image denoted by nouns, verbs are determined conditioned on
the set of detected nouns. Given the objects and verb, a scene is predicted and given the scene, the
preposition that could be associated with it is predicted as well. The most probable quadruple is then
predicted using HMM and this quadruple is used to prepare a descriptor sentence.

2.8 Forest-based statistical sentence generation[6]

This paper presents a new approach to statistical sentence generation in which alternative phrases have
been represented as packed sets of trees, or forests, and then have been ranked statistically to choose the
best one. A ranking algorithm has also been described, which compares the proposed method with simple
enumeration or a lattice-based approach. The paper first describes the lattice representation of text that
incorporates corpus knowledge and defines forests in terms of a lattice as providing a single label to each
unique arc and to each group of arcs in the lattice, thus eliminating the problem of duplication. Using a
bigram model to compare the sentences, it has been concluded that forest representation is 3-4 seconds
faster than the lattice representation and that this time does not increase with increase in the sentence
length.

2.9 Generating Sentences with Recurrent Neural Networks[2]

This paper presents the use of Long-Short Term Memory recurrent neural networks for the purpose
of generating complex sequences with long-range structure. The LSTMs have been trained on the
Penn Treebank and the Hutter Prize Wikipedia datasets and performance has been found to be at
par with the state-of-the-art language models. The prediction network has then been applied to real-
valued data through the use of a mixture density output layer and results have been provided on the
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IAM Online Handwriting Database. Sentences have been generated using the Wikipedia database and
sample handwriting outputs have been generated using the IAM Handwriting database. In both the
cases, LSTMs have been found to perform well, showcasing the network’s ability to model long-range
dependencies. Certain methods to improve the legibility of the handwriting outputs and learn to produce
human-like writing biased towards a particular writer have also been presented.

2.10 Automatic Headline Generation for Newspaper Stories[12]

This paper explores the use of Hidden Markov Models for the purpose of automatically generating
headlines for English texts. The headlines and stories have been considered joint outputs of a generative
model and for an ordered subset of the first N words of the story taken as the headline H, the H that
maximizes its probability of generation given a story has been found as the headline. This probability is
found by employing the Bayes’ theorem, with the help of bigram models for the probability of H and a
Hidden Markov Model to find the probability of story given the headline. Certain constraints have been
added to make the generated headlines more human-like and morphological variants of words have also
been considered while emitting a word for the headline. It has been found that inclusion of the variants,
along with the constrains significantly improves the fluency and accuracy of the generated output, as
compared to the baseline HMM outputs.

3 Database

For the purpose of this project, fan theories of the television series Game of Thrones were used as the
database. Fan theories of a series are theories as speculated by fans of the show about what the fu-
ture course of the series might be, based on the events that have already occurred. Several websites,
public forums and blog posts were scraped through and a database of 156 documents was prepared.
Each text document contained one theory, which was either about a single character or explored the
interlinked story lines of more than one. Analyzing these theories shows that they depend heavily on
what has already transpired in the series and thus require substantial domain knowledge in order to be
properly understood. Also, since fan theories are provided by individuals, they tend to be disparate and
a database consisting of fan theories can in general be thought of as sparse with low repetition. This
means that every character has more than a single theory to their name. This knowledge is important
as it directly affects the generated sentences. With more than one possible theory to be learned for each
character, every generative epoch gives a different sentence which makes the outputs both interesting
and harder to evaluate, since no base ’correct’ theory exists to compare the generated sentence to. An-
other property of this database that needed to be kept in mind when performing the generative task was
that the theories contain high noise. Along with a theory, each text document also contains supportive
evidence to substantiate that theory. However, for this project, only the sentence(s) providing the theory
itself were important. This presented a challenge since now the database contained a lot of text which
was redundant and did not need to be present in the corpus. Presence of jargon was also a definitive
property of this database. The corpus consisted of several words and phrases which only held meaning in
the realm of Game of Thrones and were otherwise nonsensical. This information provides the intuition
that domain knowledge will be necessary evaluate how well a model has learned from the training data
since to a person without domain knowledge, all the jargon would simply be gibberish.

3.1 Data Pre-processing

Once the data was collected and the corpus was prepared, tokenization revealed the vocabulary to be
2879 and number of tokens to be 20,594. Tokenization was done to resemble the Stanford CoreNLP
tokenization as closely as possible to maintain consistency, since POS tagging and NER were both
performed using the said package. In order to do this, certain hand-coded rules had to be added to the
simple sentence splitting technique of tokenization. Brackets, both opening and closing and punctuations
were considered to be separate tokens and the right and left brackets were replaced with the terms −rrb−
and −lrb− respectively in order to unite all brackets under the same token. Words with an apostrophe,
such as Arya′s and haven′t were broken into two tokens, with characters before apostrophe presenting
one token and characters after apostrophe, including the symbol, presenting a separate token, given as
Arya and ′s. Once split, all tokens were normalized to lower case. Since tasks were performed using
Python and its standard encoding scheme left certain utf8 characters unchanged, these had to be hand-
converted to their utf8 version. Once the conversion was complete, tokens such as \xe2\x80\x99ll which
represents ′ll were kept while others such as \xe2\x80\x9d which means ” i.e. right double quotation
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mark, were ignored. A sample text and its tokenized form after completion of all pre-processing have
been shown in figure 1 and figure 2 respectively.

More Names Checked Off Arya Starks Kill List: In Season 3 Arya (Maisie Williams) began keeping a
list of people she planned to kill. Much like Nights Watch recruiter Yoren (Francis Magee), who told her
about his own kill list prior to his death, the majority of the men and women listed had wronged Arya or
her family in some way. At the close of Season 6 Arya crossed a major name off her list Walder Frey
(David Bradley), who hosted the infamous Red Wedding during which her brother, Robb Stark (Richard
Madden), and mother, Catelynn Stark (Michelle Fairley), were killed.

Figure 1: Sample text

more, names, checked, off , arya, stark, ’s, kill, list, in, season, 3, arya, -lrb-, maisie, williams, -rrb-,
began, keeping, a, list, of , people, she, planned, to, kill, ., much, like, night, ’s, watch, recruiter, yoren,
-lrb-, francis, magee, -rrb-, who, told, her, about, his, own, kill, list, prior, to, his, death, the, majority,
of , the, men, and, women, listed, had, wronged, arya, or, her, family, in, some, way, ., at, the, close,
of , season, 6, arya, crossed, a, major, name, off , her, list, walder, frey, -lrb-, david, bradley, -rrb-,
who, hosted, the, infamous, red, wedding, during, which, her, brother, robb, stark, -lrb-, richard, madden,
-rrb-, and, mother, catelynn, stark, -lrb-, michelle, fairley, -rrb-, were, killed, .

Figure 2: Tokenized form of sample text

4 Generative Language Models

In this project, three generative language models have been used. Each of these have been briefly
explained in this section.

4.1 N-gram Markov Models

An N-gram model is a generative model that predicts the next word in a sequence based on the N-1
previous words, consistent with the Markov assumption. The probability of occurrence of a word then
depends on the N-1 previous words only. In a unigram model, this corresponds simply to the probability
of occurrence of a word in the corpus. In a bigram model, probability depends only on the previous word
and so on. Mathematically, a bigram model can be represented as:

P (wk) = P (wk|wk−1) =
count(wk−1wk)

count(wk−1)
(1)

This is the earliest and perhaps the most commonly used type of generative models. However, these
models do not inherently capture information such as the tense (past, present, future), voice(active, pas-
sive), grammar or context of the text. Also, higher order N-grams have a higher space and computation
requirement and models with N greater than 5-10 are rarely used. This leads to the problem of short
term dependency in the model which does not allow the model to prepare long sentences without them
loosing coherence. In this project, simple bigram models with three different input training data sets
have been explored and trigrams have been proposed in future work.

4.2 Hidden Markov Models

Hidden Markov Models are typically used for the purpose of part-of-speech tagging but being generative
models in nature, they can also be used for the purpose of generating text. An HMM is a statistical
markov model that assumes the output to be a markov chain governed by some hidden states. In our
case of text generation, the hidden states have been taken to be the part-of-speech tags and outputs
are words corresponding to each tag. In a first-order HMM, which has been used in this project, each
PoS tag is generated using only the previous PoS tag in what is called a transition step and words
corresponding to each tag are given as the visible output of the system in the emission step. Thus, a
word only depends on its part-of-speech, which in turn only depends on the previous part-of-speech. As
can be intuitively understood, HMMs would produce relatively grammatically accurate sentences since
the PoS sequence is included in generating the sentence. However, since the word does not depend on
the previous word, context will be lost completely and performance may even degrade as compared to
simple N-grams. This has been found to be the case in some previous experiments and has also been
corroborated in this project, where performance of HMMs has indeed been found to be poor.
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4.3 Long-Short Term Memory recurrent neural networks

LSTMs [4] are a type of recurrent neural networks which were proposed in 1997 and have recently
gained popularity as generative models in natural language processing. A recurrent neural network is a
network which has internal states that are passed from one input to another, thus allowing it to exhibit
a dynamic, temporal like behavior. The way LSTMs are utilized for sentence generation is similar to all
other generative models i.e. they are trained with a corpus and provided with a seed, from which future
words in case of a word-level LSTM or characters in case of a character-level LSTM are outputted. The
unique thing about LSTMs however is that they can take in both a sequence or a single entity as input
and provide a sequence or entity as output. In this project, both character and word level LSTMs have
been used and trained over the entire corpus of fan theories with 20 character sequences as inputs and
the next character as output. A 20 character sequence chosen randomly from the data set was provided
as seed and a range of characters varying from 5 to 100 were taken as outputs.

5 Methodology

As described above, three generative models have been used to produce sentences from the training
corpus. Along with the baseline model, variations in the training data to account for noise removal
have also been performed in association with the N-gram models, resulting in two additional models
thus making a total of five methods, which have been described below. Before performing language
modeling, named entity recognition has been performed over the entire corpus and the count of each
token recognized as a person has been taken to find the names that occur most commonly in the database.
These names present the most famous characters and sample sentences have been generated only for these
characters.

Method 1: Tokenized text + Bigram language model

The first method for generating text was a simple bigram model trained over the entire tokenized corpus.
Tokenization was done as has been previously explained and dictionaries of bigram and unigram counts
were respectively prepared. Once trained, seed word to the bigram was given as the name of a character
from the list of the five most famous characters and 10 sentences for each character were generated
using this model. For each word, the next word was chosen randomly provided it had a probability of
occurrence above a certain threshold and the process was repeated till the period token ’.’ was sampled.
Table 1 shows a seed word and a sample sentence generated for that seed using this method.

Table 1: Example sentences for five characters generated using method 1
Seed Word Sentence

jon jon and daenerys .
arya arya fills the opportunity to some point next

season .
cersei cersei and jorah , thus refuses to reddit has

to disagree and marry sansa certainly doesn ’t
craft steel .

dany dany and go by ned stark ancestor .
ned ned stark , which she told the popular fan , oh

wait , aka merman .

In this method, no noise removal is performed and all the data is taken as it is. This results in the model
learning from a lot of unwanted and redundant data which consequently affects its performance.

Method 2: OpenIE relation tuples + Bigram language model

As has been mentioned before, the Stanford OpenIE package, which is a part of Stanford CoreNLP[8]
can be used during pre-processing to remove unwanted information or noise from a database. This
is possible because the package extracts only relational tuples from the input text i.e. tuples in the
form of subject-relation-object. Each sentence is first split into entailed clauses and each clause is then
maximally shortened to produce shorter sentence fragments. These fragments are then segmented into
triples and presented as outputs. This method performs noise removal to a certain extent as it ignores
any information in a sentence that is not a part of the relation presented between the subject and object.
This way, only the important information from any sentence is extracted and all additional information

6



is discarded. Using this method, 3500 relational tuples were extracted. Once the entire corpus has
been passed through the OpenIE package and converted into relational tuples, another bigram model
is prepared and trained over the new relatively noiseless corpus. Sentences are generated in the same
manner as in method 1. Table 2 shows the seed word and sample sentence pair generated using this
method.

Table 2: Example sentences for five characters generated using method 2
Seed Word Sentence

jon jon snow is faced god lol .
arya arya take ned ’s head is jon has sent as

narcissist on daenerys goes .
cersei cersei control .
dany dany to greyscale .
ned ned has pale .

One drawback of this technique of removing noise is that the same sentence is often shortened in multiple
ways for multiple relations and thus, similar sentences are presented to the model repetitively. Also,
certain relational tuples begin with a pronoun as their subject and provide no knowledge of who that
pronoun might refer to, thus causing that tuple to lose any information that it may have otherwise
provided.

Method 3: Named Entity relation tuples + Bigram language model

From method 2, we see that relational tuples extracted using OpenIE can be used to improve the quality
of the corpus to be trained but this creates some new problems of its own. One such issue is the presence
of a pronoun as the subject of a relational tuple. In this method, to further get rid of text that does not
provide useful information, a list of names entities is prepared and from the extracted relational tuples,
only the tuples with the subject matching an entity in the named entities list are kept while the others
are discarded. This further narrows down the list of relational tuples from 3500 to 2000 but these tuples
now rarely contain a sample which does not provide important information for the purpose of language
modeling. An example of the type of sentences accepted and the type of sentences discarded has been
given in table 3. Table 4 presents the seed words and sample sentences generated using this method.

Table 3: Examples of sentences accepted and rejected using named entity information

Accepted
Arya ’s friend was seen in Season 3
Samwell Tarly Will Step Up to Plate

Rejected
his was temporarily freed
citadel is with Gilly

Table 4: Example sentences for five characters generated using method 3
Seed Word Sentence

jon jon is true stark caused mad king ’s son
is research .

arya arya arrived back trying .
cersei cersei being character big enough .
dany dany could threaten westeros love .
ned ned stark heir .

Method 4: Tokenized text + Hidden Markov Model

Markov models, while good for generating sentences by learning form the sequential occurrence of words,
cannot ensure grammatical correctness as they do not take into account the sequence of part of speech
tags, which if in the incorrect order, present a grammatically incorrect sentence. Hidden Markov Models
can be used for this purpose. Method 4 comprises of using a first order HMM with the hidden layer
presenting the part-of-speech tag and the output layer presenting a word corresponding to each hidden
node. Tokenized text has been used to train the HMM and given a seed word and its part of speech, the
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remaining words have been determined. Sampling of words is again continued until the period token ’.’
is sampled. Table 5 shows the seed words and sample sentences generated using method 4.

Table 5: Example sentences for five characters generated using method 4
Seed Word Sentence

jon jon martin be an small states but the traditional theory
kill was given her face looking things -rrb- , play faceless
of if her burned knights have arya hound about we see not
the winter

arya arya littlefinger ’s coat for it have n’t , n’t beloved brother
under the walkers or the jorah load to get the mad stark
, and somehow be

cersei cersei euron m.o. ’s downfall
dany dany littlefinger and bran true that it how a secret rider

on scenario , doubtful , gregor of nan cersei ’s down so that
thought he “ dragons , structurally -rrb- and through dark
scenario story and diagnose immediately in a jon troops

ned ned bran as the idea

Method 5: Character level LSTM

In all the above approaches, only short-term dependencies have been taken into account. This means that
occurrence of a word only depends on the previous word or its part of speech which in turn depends on the
previous part of speech only. These short term dependencies cannot prepare good sentences, especially
of a longer length since they will loose coherence as the length of the sentence is increased. Analysis of
the sentences presented above shows that most sentences probably make sense in short fragments but
do not present any overall fluency. This is due to the inability of the models to judge the next word
based on a sequence of previous words. LSTMs have thus been used to include long-term dependencies
when generating a sequence. Two types of LSTMs have been trained, once on the characters of the
corpus, resulting into a character-level LSTM and once on the words of the corpus, resulting into a
word-level LSTM. In both cases, a sequence (either characters or words) was taken as input and the
next character/word was taken as output and LSTMs were trained with 2 layers, each consisting of 256
neurons. While testing, a randomly chosen sequence was given as input and a fixed length of words
were generated for that seeding. Example of a character level LSTM seeded with 20 characters and the
characters generated as output has been given in table 6.

Table 6: Example output of a character-level LSTM

arya starks kill li st. in season 3 arya the the the the the

6 Evaluation and Results

Table 7 presents the top eight most popular characters of the TV show Game of Thrones and the number
of times each name was encountered in the training corpus. Once these names have been determined, 10
sentences for each character have been generated using the five methods given above. For each sentence,
two different ratings have been provided.

6.1 Evaluation Metrics

For the purpose of evaluation of the sentences generated using each of the aforementioned methods,
human subjects were asked for assistance. 4 subjects, 2 of whom had domain knowledge while the other
2 did not, were asked to rate the sentences between 1 and 10. No fixed rules were provided to rank the
sentences, in order to capture the general fluency and accuracy of each sentence along with how well a
human reader can understand the sentence being generated. For reader with domain knowledge, this
also captured how much information they believed to have received from a generated sentence and with
respect to the task at hand i.e. generating fan theories, how important and meaningful they thought
the sentence was. Based on ratings from these two groups of readers, two different metrics for rating
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Table 7: Most famous character names and count of occurrence
Rank Name Count

1 jon 114
2 arya 62
3 cersei 55
4 dany 44
5 ned 32
6 ramsay 31
7 jaime 28
8 sam 27

sentences were considered. Metric 1 of evaluation was general fluency and clarity in meaning of sentences
without taking domain knowledge into consideration. Metric 2 of evaluation was fluency, accuracy and
information content of sentences taking domin knowledge into consideration.

The two metrics of evaluation were taken in order to capture how well each method performs in general
versus how meaningful its outputs are when thought of in terms of a particular domain. Each method
was assessed independently on the basis of how well it could capture domain knowledge and different
methods were compared with each other to see which gave the best performance in each of the two areas.

6.2 Results

Comparison of the first four methods using metric 1 i.e. without taking any domain knowledge into
consideration has been shown in figure 3. Ratings have been calculated by taking the average of the
rating of all 50 sentences corresponding to each of the models. This result shows that method 3 performs
better than all the other methods when only general coherence is considered. This can be attributed to
the fact that only important information and sentences which are properly formed, with a proper noun
as subject and a relation between subject and object, were the only ones given to the model for training.
This resulted in a more robust trained bigram model which in turn resulted in better sentences. HMMs
performed quite poorly as compared to even the baseline bigram model. This can be justified by shedding
light on the fact that while the grammatical structure of the sentences would be intact owing the the
appropriate part-of-speech sequence, words corresponding to each PoS tag are generated irrespective of
what the previous word might be. This results in sentences which do not have much continuity as the
words, despite having the correct grammatical ordering, are still not related to one another, resulting in
an informative sequence.

Figure 3: Comparison of methods using metric 1

Figure 4 shows a comparison between the methods based on ratings when domain knowledge is also
taken into account. As can be seen, HMMs still perform quite poorly and are no better than the baseline
bigram model. However, in this situation, the second method, which still keeps all relational tuples intact,
seems to perform the best, as opposed to method three in the previous case. This can be reasoned in
the following manner: since the second method keeps all the relational tuples while removing noise from
the database, it performs better than method 1. However, method three further reduces the number of
tuples and while this provides a generally better formation of the resultant sentences, loss of information
of domain in reducing the tuples from 3500 to 2000 results in an overall poor performance of that method
domain-wise. Because the second method still has sufficient sentences to learn some information about
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the domain while taking care of all the noise, it performs the best when sentences are evaluated keeping
the domain information in mind.

Figure 4: Comparison of methods using metric 1

The final result has been presented in figure 5, which shows, for each of the 50 sentences, the ratings given
with and without domain consideration. As can be seen, in general, rating of a sentence without taking
domain knowledge into account is higher than when domain knowledge is considered. This pattern
holds true for all four models, where for each one, average ratings with domain knowledge are lower
than average ratings without domain knowledge. This can again be attributed to the fact that while a
sentence may in general make sense to common audience, when taken the perspective of domain-based
information, the sentence may not be considered that important or informational.

Figure 5: Comparison of ratings using metrics 1 and 2 for method 1

From table 6 it can be seen that after a certain number of sampling epochs, the model starts repeating.
This is probably due to the fact that words such as articles, punctuations etc are more commonly
occurring that other words, which is why when selecting the most probable next character, the LSTM
keeps choosing the same most common character again and again. This results in the formation of a
loop where the same character sequence keeps repeating. The same happens in a word-level LSTM as
well.

7 Conclusion

In this project, sentence generation methodologies for the case of fan theories of the TV show Game
of Thrones have been explored. The database has high noise, contains jargon and is sparse in nature.
The performance of different generative models on such a database have been explored and standard
NLP packages such as Stanford CoreNLP and Stanford OpenIE have been exploited for the purpose of
improving the performance of one of these models. It has been found that simple generative models
such as bigrams in general perform better that the more sophisticated HMM and LSTM models for a
noisy database such as this one. Also, it can be concluded from figure 5 that these generative models are
not good in learning domain information from a training corpus and in general do not map information
relevant to the particular domain in their generated results. From the performance of bigram models
after noise removal, it can be concluded that use of relational tuples for this purpose can indeed improve
the performance of standard bigrams, which also leads to the conclusion that input training data is an

10



important factor when preparing a model and it is a decisive factor in determining how accurately the
model performs. In general, the Stanford CoreNLP and OpenIE packages perform well, with appropriate
PoS tagging, Named Entity Recognition and Co-reference resolution.

8 Discussion and Future Work

It is interesting to see that despite the superiority of recurrent neural networks, they perform very
poorly in the presence of a noisy database, while models as basic as bigrams give a better than average
performance. Right now, only bigram models have been used and experimentation with some noise
removal techniques have been conducted. However, there are multiple ways in which this project can be
carried forward. Some of the possibilities have been discussed here.

1. Higher N-grams: Despite the fact that higher degree N-gram models are rarely used, models
such as trigrams or quadruple grams can still be used. Intuitively, these models combined with the
noise removal techniques explored above should provide readable and well formed sentences.

2. Co-reference resolution: Instead of removing tuples having a pronoun subject, co-reference
resolution can provide us with the information of which noun that pronoun points to. If each
pronoun is replaced with its corresponding noun and then tuples beginning with named entities
are extracted, the size of database would be comparatively bigger and more information will be
passed to the models. This should ideally result in improvement of the domain rating as well as
the general rating of the models.

3. Relational Tuples and LSTMs: The reason concluded for why LSTMs perform poorly is that
presence of words such as ’the’,’a’,’for’ etc overshadows the other informative content. In that case,
training the LSTM with relational tuples extracted using OpenIE instead of the entire corpus can
help solve this particular problem.

4. Word embedding with LSTM: Word-level LSTM in this project was trained by indexing each
word and considering the word index to be a feature of the word. However, more descriptive features
such as word embeddings can be used to train the LSTMs in order to improve their performance.

These methods mentioned above could not be attempted due to lack of time and/or lack of computation
space and power. However, with sufficient computation space, powerful LSTMs can be trained to learn
long-term dependencies and these, trained over the noiseless relational tuples with word-embeddings as
features can be expected to outperform the current models by a significant margin.

Database Sources

For the purpose of database collection, several websites were scanned and theories were hand-picked and
stored in text files. The following websites are some of the main sources of the training corpus collected
for this project.

Game Of Thrones - A REDDIT OF ICE AND FIRE
Mashable: 10 GoT Fan Theories Ranked Least to Most Likely
Mashable: 9 key predictions for what’ll happen in ’Game of Thrones’ Season 7
Mashable: Here’s what ’Game of Thrones’ super-fans think will happen in Season 7
Cosmopolitan: 17 Most Insane Game of Thrones Fan Theories
Game-of-Throne-best-fan-theories-season-6-spoilers
Game-of-Thrones-wildest-fan-theories
Game-of-Thrones-theories
17-big-Game-of-Thrones-fan-theories
The-13-craziest-Game-of-Thrones-fan-theories
Game-of-Thrones-8-more-fan-theories-for-season-7-and-8
Grading-the-latest-Game-of-Thrones-fan-theories
15-amazing-Game-of-Thrones-fan-theories
‘Ggame-of-Thrones’ season-7-theories
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https://www.reddit.com/r/gameofthrones/comments/4qy3ot/main_spoilers_season_7_predictions_megathread/
http://mashable.com/2016/05/28/game-of-thrones-fan-theory-analysis/#NLTWpuVbPiqI
http://mashable.com/2016/07/01/game-of-thrones-season-7-predictions/#U7VdlsT1Kmqd
http://mashable.com/2016/07/06/superfan-game-of-thrones-season-7-theories/#bCGaslPN4Sqy
http://www.cosmopolitan.com/entertainment/tv/a61105/game-of-thrones-theories/
http://www.twcc.com/entertainment/galleries/2016/04/game-of-thrones-best-fan-theories-season-6-spoilers-jon-snow
http://www.tvguide.com/special/spring-preview/gallery/game-of-thrones-wildest-fan-theories/photo/f011de95-92f4-420f-a184-fceaddad30a1
http://www.refinery29.com/2016/05/110410/game-of-thrones-theories#slide-1
http://www.thewrap.com/game-of-thrones-fan-theories-benjen-missandei-bran-poop/2/
https://www.bustle.com/articles/171138-the-13-craziest-game-of-thrones-fan-theories-will-tide-you-over-until-season-7
http://www.digitalspy.com/tv/game-of-thrones/feature/a799588/game-of-thrones-8-more-theories-for-season-7-and-8/
http://www.slashfilm.com/game-of-thrones-fan-theories/2/
http://www.gamesradar.com/game-of-thrones-season-7-theories/
http://www.ibtimes.com/game-thrones-season-7-theories-6-things-may-go-down-when-hbo-show-returns-2017-2392857
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