
Automatic colorization of videos

Tanvi Sahay
University of Massachusetts Amherst

tsahay@cs.umass.edu

Ashutosh Choudhary
University of Massachusetts Amherst

ashutoshchou@cs.umass.edu

Abstract

Realistic colorization of videos has been of great interest
to the artistic community, primarily for restoring historical
color films and colorizing legacy videos. In this project,
we experimented with several methods in order to auto-
matically colorize videos on a frame-by-frame basis. We
focused on rectifying two primary issues encountered with
video colorizations : lack of color consistency between sub-
sequent frames and desaturated colorization of individual
frames. We used an LSTM to encode the sequential informa-
tion of videos and thus maintain color consistency between
successive frames. We used a class-rebalancing loss to re-
weight color predictions on the basis of their rarity. We
evaluated out results using average per-pixel RMSE over
all frames in a single video and also set up a colorization
“Turing Test” to determine which models gave the most re-
alistic colorization.

1. Introduction
The task of automatically hallucinating colors for

grayscale images has seen a lot of interest in recent years
in the Computer Vision community[7][6],[2]. Not only is
it interesting to see how our existing deep learning mod-
els perform on this task but having a good colorizer can
also allow us to perform colorization on legacy images
and perform downstream tasks such as object detection on
these images using networks trained on color images. A
compelling extension of automatically colorizing images is
video colorization, which has been a popular part of the
motion pictures as a means to modernize black-and-white
movies or provide an artistic visual effect to them, to restore
original color movies and videos and to integrate originally
black-and-white videos into modern day color films. In this
project, we attempted to automatically colorize videos on a
frame by frame basis by modifying the recent popular ar-
chitectures for image colorization.

We compared two baseline image colorization
architectures([7],[6]) and analyzed their performance
on video colorization. Results from both architectures

showed that consecutive frames had no consistency be-
tween their color predictions, despite the fact that the
frames were very close to each other in terms of the objects
present in each frame. This shows up as a ’flickering’ and is
a limitation of the architecture. This limitation stems from
the fact that the model has no information of the frames
it has seen in the past while predicting the color values of
a particular frame. This flickering gets aggravated when
To account for this sequential nature of video frames, we
took inspiration from [4] and implemented an LSTM on
top of the present CNN based architectures. Additionally,
in order to avoid getting desaturated colorization of indi-
vidual frames, we borrowed from [7] and implemented a
class-rebalance loss in order to achieve brighter and more
realistic colorizations per frame.

In the following sections, we describe both baseline ar-
chitectures in detail, along with the sequence architecture
implemented by us. Section 2 delves into some of the rel-
evant previous works, section 3 describes our sequential
framework and section 4 provides details of the experiments
and their results.

2. Prior Work
2.1. Deep Colorization [2]

In this paper, Cheng et.al. presented the first fully auto-
mated technique of colorizing images in 2016, by treating
the image colorization as a regression problem to predict
the ab channel values given the lightness channel and using
deep neural networks to solve it. They propose an adaptive
image clustering technique to group reference input images
and train a deep neural network for each cluster. Given a
pair of reference images Λ =

−→
G ,
−→
C , where

−→
G corresponds

to a grayscale image and
−→
C corresponds to its colored coun-

terpart, each DNN is trained on feature descriptors for pix-
els in the grayscale image to predict the chrominance values
of color images as outputs. Given this formulation, they try
to minimize the least squares problem:

argminθ∈Υ

n∑
p=1

||F (θ, xp)− cp||2 (1)

1

where F is the function that maps input feature descrip-
tor of the grayscale image to chrominance values of the
color image, θ are parameters of this function, xp is the
feature descriptors extracted from pixel p, cp is the chromi-
nance value of the corresponding color pixel, n is the num-
ber of training pixels sampled from input and Υ is the func-
tion space of F (θ, xp). Contradictory to their approach, we
model the colorization problem as a classification problem,
similar to the more recent work. However, similar to their
approach, we transform our images to the Lab space and
predict ab values given lightness values per pixel.

2.2. Colorful Image Colorization [7]

In this paper, Zhang et.al. formulated the image coloriza-
tion problem as a classification problem and used a VGG-
styled network modified with extra layers for added depth
and dilated convolutions to hallucinate realistic looking col-
orizations of grayscale images. They predict a distribution
of colors for each pixel and re-weight the loss at training
time to put more emphasis on rare colors. Their network
optimizes the multinomial cross-entropy loss:

Lcl(Ẑ,Z) = −
∑
h,w

v(Zh,w)
∑
q

Zh,w,qlog(ˆZh,w,q) (2)

where v(.) is the weighting factor used to rebalance the
loss, Ẑ is the probability distribution over possible colors,
Z is the vector received by vectorizing ground truth color
using a soft encoding scheme, against which the predicted
distribution is compared. Subscripts h,w and q denote the
dimensions of the image, where h and w are height and
width respectively and q is the number of bins in which ab
values have been quantized.

To rebalance the loss to account for class rarity, each
pixel is weighted by the weight corresponding to its clos-
est ab bin. In this project, we build upon their original ar-
chitecture and make use of the class-rebalance loss to avoid
desaturation of individual frames.

2.3. Learning representations for automatic col-
orization [6]

In 2017, Larsson et.al. proposed a hypercolumn based
architecture to predict per-pixel histogram of colors over
a set of color bins instead of a single color to account for
scene elements that can draw from several colors. They
framed the colorization problem as learning a function f :
X → Y , where X is the input space, Y is the output space
and the function is implemented as a VGG network. The
experimented with two color spaces - Lab and HSV where
the V and S channels are modified using a color bicone such
that: V = L + C

2 and S = C
V , where L and C are light-

ness and chroma values respectively and each channel space
binned separately into 32 bins.

Given these color spaces, they defined a loss over the
predicted color distributions as:

Lhist(x,y) = DKL(y||f(x)) (3)

where Y = [0, 1]K described a histogram over K bins
and DKL, is the KL-divergence. To account for instability
of Hue as Chroma approaches 0, they also added a sample
weight to their loss:

Lhue/chroma(x,y) (4)
= DKL(yC ||fC(x)) + λHyCDKL(yH ||fH(x)) (5)

In this project, we used their pre-trained model on video
frames and compared the results to our model as well as the
zhang model.

2.4. Long-term Recurrent Convolutional Networks
for Visual Recognition and Description [4]

In this paper, Donahue et. al. propose the LRCN(Long
Recurrent Convolutions Network) architecture that com-
bines a deep hierarchical feature extractor like CNN with a
model capable of long-range temporal recursion like LSTM
to process sequential data. The model works by passing
each image through a feature transformation φV (.), gener-
ally a CNN to produce fixed length feature representations
for each input image (φV (xt)) where xt is the tth image,
V is the set of parameters of the CNN and φ is the feature
transformation function. These features are then passed into
a recurrent neural network module (RNN or LSTM) that
predicts a distribution P(yt) over outcomes yt ∈ C at time
t by passing its outputs zt ∈ Rdz through a linear predic-
tion layer ŷt = WzZt + bz , where W and b are learned
parameters and finally applying the softmax function on ŷt:

P (yt = c) = softmax(ŷt) =
exp(ŷt, c)∑

c′∈C exp(ŷt, c
′)

(6)

They tested the architecture in three setting: sequential in-
put and static output, static input and sequential output and
sequential input and sequential output. In this project, we
have build used the architecture similar to the one they pro-
pose for the first setting. However, instead of taking an av-
erage over all time steps, we make use of the final time step
output to compare with the ground truth.

3. Data
For this project, video data was extracted from the

YouTube-8M [1], which is a large-scale labeled video
dataset that provides more than 3 million videos , each 120-
500 seconds long, divided into 4716 categories. Of this, we
chose the category ‘movieclips’, that contained 1533 videos
of varying length. Details for the videos are provided in ta-
ble 1.

2

Table 1. Dataset
Parameter Value
input video formats .mp4, .webm
output video formats .mp4
input frame format .png
frames per second 25 fps
bitrate 330k bps
audio stream frequency 441k Hz
original resolution 720 x 1080
Models based on Zhang et al. input
frame cropping

224 x 224

Models based on Larson et al. input
frame cropping

256 x 256

number of training frames 207360
number of val frames 25920
number of test frames 25920
LSTM sequence length 6

Out of the 1533 videos available, 60 were randomly cho-
sen and divided into train, val and test categories according
to the ratio 80:10:10. The final models were trained on a to-
tal of 48 videos and tested on 6 videos, with the remaining
6 used as a validation set.

3.1. Preprocessing

Each video in the train, test and val set was divided into
frames according to the fps value given in table 1. For a
standard 2 minute video containing 25 frames per second,
3000 frames were extracted. Once the color frames were
extracted, train and val frames were used to train the ex-
perimental models, within which lightness and ab channels
were separated. The lightness channel was used as input to
the models and ab channel values were as the ground truth
predictions. For testing the models, lightness channels for
test frames were extracted and these grayscale frames were
given as test inputs.

4. Technical Approach

The underlying task of image or video colorization is
not to necessarily recover the actual ground truth color of
the image or video, rather it is to produce a plausible col-
orization that could potentially fool a human test subject
[7]. Although, this task may not be the most popular way
in which image colorization tasks have been defined in the
past, it is a more achievable one since it models enough
of the statistical dependencies between the semantics and
textures of grayscale images and their color version. Thus,
we propose an architecture that both predicts more realistic
colorizations and maintains the sequential structure of input
frames.

4.1. Architecture

We train a Long-term Recurrent Convolutional
Network[4] mapping a grayscale input to a distribution
over quantized color value outputs using the architecture
in figure 1. We temper the loss from CNN by sequential
information provided by the LSTM part of the architecture
as weighted sum of losses 1.

The network consists of 7 conv layers each consisting
of 2 or 3 repeated conv and ReLU layers, followed by a
batchNorm[5] layer. The last conv layer is followed by
a deconv layer used to upsample the image to obtain di-
mensions suitable for quantized classification loss of CNN.
The network does not have any pool layers. All changes
in resolution are obtained by using downsampling or up-
sampling convolution blocks. The architecture till the sev-
enth conv layer resembles a modified VGG-16 architec-
ture. The modifications in VGG-16 and the objective func-
tion/classification loss from CNN are the ones presented in
[7]. The logits of the CNN network serve as function ap-
proximators or vector representations of the frames used as
input to the LSTM network. Batching without shuffle helps
retain the sequence of frames for LSTM network where the
labels are the sequence vector representations of the frame
color labels used for CNN network. Hence, the LSTM be-
haves as a cross-channel auto-encoder.

4.2. Objective Function

Given the lightness channel L of an image, our model
tries to predict the corresponding a and b color channels of
the image in the CIE Lab colorspace. Since color prediction
is described as multimodal classification in [7], given an
input channel X ∈ RHxWx1 our CNN objective is to learn
a mapping Ŷ = F(X) to the two associated color channels
Y ∈ RHxWx2, where H,W are image dimensions after
preprocessing step. We quantize the ab output space into
bins with grid size 10 and Q = 313 which is the number of
quantized bins in ab space. A function Z = H−1

gt Y, which
uses a soft-encoding scheme[7], converts ground truth color
Y to vector Z. We compare the CNN predicted quantized
colors Ẑ to Z to obtain the multimodal cross entropy loss
Lcl

4.3. Class rebalancing

Image background such as clouds, pavement, dirt, walls
are statistically more probable to appear in a dataset. Due to
this, the distribution of ab value is strongly biased towards
low ab values. Thus, desaturated values in a natural image
are orders of magnitude higher than for saturated values. If
not accounted for, this would lead to a loss function biased
towards desaturated ab values. The class-imbalance prob-
lem in this classification task is resolved by re-weighting the
loss of each pixel at train time based on pixel color rarity.

3

Figure 1. Model Architecture

This re-weighting can be achieved by re-sampling the train-
ing space such that each pixel is weighed by factor w ∈ RQ
based on its closest ab bin.

v(Zh,w) = wq∗ , where q∗ = argmaxqZh,w,q (7)

w ∝ ((1− λ)p̃ +
λ

Q
)−1 (8)

E [w] =
∑
q

p̃qwq = 1 (9)

Smoothening of distribution p̃ ∈ ∆Q can be achieved by
estimating the empirical probability of colors in the quan-
tized ab space p ∈ ∆Q from the entire training set and
smooth the distribution with a Gaussian kernel Gσ . The
distribution is then mixed with a uniform distribution with
weight λ ∈ [0, 1], inversed and normalized such that the
weighting factor is 1 on expectation.

4.4. Loss function

Using equations [7,8,9] and the definition of cross-
entropy, multinomial cross entropy loss with class
rebalancing for the CNN subgraph is defined as:

Lcl(Ẑ,Z) = −
∑
h,w

v(Zh,w)
∑
q

Zh,w,qlog(ˆZh,w,q) (10)

The autoencoder part (LSTM), requires re-sampling of la-
bels Y using a deconv layer, to obtain Yseq . The sequence

based multimodal extracted-feature classification loss is ba-
sically a softmax over sequence objective function.

Lseq = −
∑
j

yj log(
esj∑q
k e

sk
) (11)

where yj ∈ Yseq . The final loss function is a weighted
sum of the two loss functions described. This choice of loss
function is based on the idea that the primary loss which
should impact colorization to a large extent should be Lcl.
Lseq should impact the overall loss if there is a large devi-
ation of current frame colorization from the previous one.
This loss is suitable for our problem because with 24fps
frame rate from video produces highly correlated frames.
The overall loss therefore is:

L = βLcl + (1− β)Lseq (12)

The choice of β is critical in the experiments and could be
learned using hyper-parameter optimization. In the interest
of computational runtime, we babysit the process of choos-
ing β and chosen a value of 0.8 .

5. Experimentation and Results
We experimented with 5 different models and compared

their results on the basis of root mean square error between
the predicted and ground truth colors. We also set up a
turning test to determine videos colorized by which method
were preferred more by human evaluators.

4

Table 2. Optimal Hyperparameters for each experimental model

Model base lr lr policy
step
value γ max iter momentum weight decay optimizer

larsson et.al. 0.001 ”multistep”
50000
65000
80000

0.1 1000000 0.9 0.0005 Adam

zhang et.al. 3.16e-5 ”step” 43000 0.316 450000 0.9, 0.99 0.001 Adam
zhang retrained 3.16e-5 ”step” 43000 0.316 50000 0.9, 0.99 0.001 Adam

LRCN(our model) 3.16e-5 ”step” 43000 0.316 50000 0.9, 0.99 0.001 Adam
Ensemble(our model) Same values as in larsson et.al. and zhang et.al.

5.1. Experimental Models

The models experimented with have been briefly de-
scribed below. Hyperparameters used for training each of
these models have been provided in table 2.

5.1.1 zhang et.al.

We downloaded the pre-trained model provided by zhang
et.al. and tested our graycsale frames using this model.
The model was trained on 1,000,000 color images taken
from ImageNet[3] for 450000 iterations and each image
was cropped to the shape 224x224.

5.1.2 larsson et.al.

We also downloaded the pre-trained model provided by
larsson et.al. and tested it on our grayscale video frames.
This model was trained on 1.2 million image net training
set images and each image was cropped to at most 256 pix-
els in the smaller dimension.

5.1.3 zhang et.al. retrained

Since the original zhang model was trained on ImageNet,
we fine-tuned the weights of the original model end-to-end
using the ‘movieclips’ training data extracted by us. We
tested the grayscale images on this retrained model as well.

5.1.4 Ensemble

We implemented an ensemble of outputs extracted from the
pre-train zhang and larsson models as well. In order to com-
pute the ensemble, we averaged the values predicted by both
models for each pixel in the image.

5.1.5 LRCN

Finally, we tested the grayscale images with our LRCN
model. We used the same hyperparameters as the ones spec-
ified in zhang’s original paper, including cropping the im-
ages to the size 224x224 and trained the model for 50000
iterations. We initialized the CNN with the pre-trained

zhang model and fine tuned these weights while learning
the LSTM parameters from scratch.

5.2. Evaluation Metrics

5.2.1 RMSE

To evaluate how well each algorithm predicted the colors of
each pixel, we took the pixel wise root mean square error
between each predicted frame of each video and its cor-
responding ground truth color frame. For each frame, we
averaged the error per pixel and finally, averaged the frame
rmse for all the frames for each video to obtain a single
value.

5.2.2 Colorization Turing Test (CTT)

While RMSE gives an estimate how similar to the original
ground truth our predictions are, it is not always the final
aim of a colorization task. Another way of evaluating colors
is on the basis of realistic they look to a human evaluator.
To evaluate this, we set up a colorization turing test where
we asked 10 people to score each of our predicted colorized
videos in the range of 1 to 5 on the basis of how realistic
they looked.

5.3. Results

Results obtained for both evaluation metrics are shown in
table 3. Figure 3 shows sample frames extracted from each
experimental model along with the corresponding original
frames.

Table 3. Results for each experimental model
Per-pixel RMSE CTT scores

larsson et.al. 7.277 3.4
zhang et.al. 8.8908 4.2

zhang retrained 6.54869 3.2
LRCN(our model) 6.8068 3.0

Ensemble(our model) 7.2878 4.5

From figure 2, it can be seen that the ensemble model
generates the most realistic looking pictures while the col-

5

Figure 2. Sample frames extracted from each experimental model. 1) Original color frames. 2) is the grayscale input, 3) extracted from
larsson et.al. 4) extracted from zhang et.al. 5) extracted from Ensemble model 6) extracted from retrained zhang and 6) extracted from
LRCN model.

ors predicted by larsson look too desaturated and those pre-
dicted by zhang look too bright. From the images it can also
be seen that for the LRCN model, subsequent frames have
similar colors, and that the frames have more realistic and
bright colors than the zhang or larsson model(particularly
the sky and tree).

Figure 3 shows a series of frames for which the LRCN
model did not perform well. However, the ensemble model
still performed remarkably well for this sequence as well.

6. Conclusion

In this project, we experimented with a long-term convo-
lution recurrent neural network architecture for the purpose
of automatically colorizing grayscale videos and compared
their results with standard image colorization models like
zhang et.al., larsson et.al. and their ensemble. We observed
that while larsson’s model gave desaturated values that had
low RMS error, zhang’s predictions were brighter and more
realistic, though further away from the ground truth, result-

ing in high RMS error. The Ensemble model compensated
for the brightness of zhang’s prediction and avoided the de-
saturation caused by larsson’s predictions, thus giving the
best resuls. We also observed that while the LRCN learned
to maintain color between sequences of frames, the resul-
tant predictions were very different from the ground truth,
thus resulting in high RMSE values. We attribute this be-
havior to the sequential input single output architecture used
by us and believe that the sequential input-output architec-
ture would perform well on this task.

6

Figure 3. Sample frames extracted from each experimental model. 1) Original color frames. 2) is the grayscale input, 3) extracted from
larsson et.al. 4) extracted from zhang et.al. 5) extracted from Ensemble model 6) extracted from retrained zhang and 6) extracted from
LRCN model.

References
[1] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,

B. Varadarajan, and S. Vijayanarasimhan. Youtube-8m:
A large-scale video classification benchmark. CoRR,
abs/1609.08675, 2016.

[2] Z. Cheng, Q. Yang, and B. Sheng. Deep colorization. CoRR,
abs/1605.00075, 2016.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

[4] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell. Long-term re-
current convolutional networks for visual recognition and de-
scription. CoRR, abs/1411.4389, 2014.

[5] S. Ioffe and C. Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015.

[6] G. Larsson, M. Maire, and G. Shakhnarovich. Learning repre-
sentations for automatic colorization. CoRR, abs/1603.06668,
2016.

[7] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-
tion. CoRR, abs/1603.08511, 2016.

7

