
University of Massachusetts Amherst

Concept/Theme Roll-Up

Submitted By
Tanvi Sahay, Ramteja Tadishetti, Ankita Mehta, Shruti

Jadon

In collaboration with Lexalytics

In fulfillment of the Data Science Industry
Mentorship Independent Study

May, 2017

1

1 Introduction

The key ideas summarizing a set of sentences can be succinctly represented with the help
of short key-phrases that provide information about the theme(s) present in the targeted
text. These key-phrases can be used as a means to provide users with information re-
garding the primary themes present in a set of documents and grouping similar phrases
pertaining to the same theme together can allow the users to query the theme that they
are interested in, without acknowledging the other topics. This is of particular relevance
in the field of hospitality, for both providers and consumers. For example, a hotel owner
may be interested in knowing all the bad reviews that their hotel’s staff has received
to improve the quality of housekeeping and all the good reviews that their food has
received in order to improve their menu. Similarly, a customer may only be interested
in the kind of facilities the hotel has to offer and not the location or food. In such cases,
the hotel owner should have access to all reviews pertaining only to staff/food while the
customer should be able to view all reviews pertaining to facilities and filter out the
others that she is not interested in. However, since key-phrase extraction techniques do
not preserve the semantics or context of the phrase, grouping similar phrases can be a
challenging task. In this report, we summarize the methods explored by our team in
order to successfully group similar phrases pertaining to a single theme together. For all
the methods explained, by similarity, we mean phrases that may be worded differently
but occur in similar contexts and share an overlaying theme. For example, given the
phrases ‘cheese omlette’, ‘breakfast buffet’, ‘short ribs’ and ‘evening party’, we try to
cluster the first three together into a single group and the last one into a separate group.

2 Pipeline

We divided the task of theme roll up into three prime subtasks:-

1. Data Collection and Key Phrase Extraction

2. Conversion of phrases to their distributed real-valued representation

3. Clustering of similar phrases

A key-phrase, as mentioned above, is nothing but an N-gram that contains information
regarding an important theme of a set of sentences. Any N-gram can be characterized
by the words contained in the N-gram and the words around it, or the N-gram’s context.
Keeping this in mind, we explored three categories of distributed representations - using
only the words contained in the phrase, using only the context of the phrase and using
both the words and the context of the phrase. For clustering, we experimented with two
techniques: K-Means Clustering and Gaussian Clustering. The final pipeline has been
shown below:
The raw text had to be preprocessed before phrases could be extracted from it. Hence,
after data collection, data cleaning was also performed. The next sections describe each
part of the above pipeline in further detail.

3 Data Collection

We experimented with two datasets, differing in both size and content. The first dataset
we chose was a more general one, which contained letter, articles and media clippings
about different government agencies and different types of bills. The data was open

2

Data
Collection

Data
Cleaning

Key-phrase
Extraction

Extracted
Key Phrases

Extracted
Key Phrases

Phrase Rep-
resentation

Only
Context

Only
Words

Both words
and context

Clustering

Figure 1: Project Pipeline

source and was obtained from Open American National Corpus and had a total of
286 files of varying sizes. The total token count for this dataset was 1059362 and its
vocabulary size was 65690. The second dataset we experimented with was the Hotel
Reviews Dataset, as provided to us by Lexalytics. The data contained reviews of hotels
from different sources and each review was approximately 2-3 sentences in size, which
accounted for approximately 36000000 tokens and more than 750000 unique words in the
data’s vocabulary. As can be observed, the second dataset was much larger than the first
one and had a much greater key-phrase count as well. Phrases were extracted for both
these datasets using methods that will be explained below. However, the government
dataset was observed to have sparse phrases with not much similarity in them. This
presented a challenge in grouping them together as the phrases were not concurring to
common themes and too many phrases had independent themes not matching with any
other phrase(s). For this reason, we discarded this dataset and carried out the remaining
experiments with the reviews dataset only. A cursory overview of the dataset established
that abundant similar phrases were present in it, which could be grouped under common
recurring themes.

4 Preprocessing Methods

Before the raw text could be used for key-phrase extraction, certain issues had to be
corrected. The Hotel Reviews dataset had several characters that violated the utf-
8 encoding scheme, which was being used as the standard. Due to the presence of
reviews in languages other than english, it was observed that several characters had
non-standard encoding schemes, such as latin, utf-16 etc. To solve this problem, any
character that caused an encoding error was replaced with an empty string. Punctuation
marks were removed from the cleaned utf-8 text, along with stop words(’a’,’an’,’the’),
to ensure that the context being considered for the case of context-based distributed
representation provided something meaningful and not standard words such as ‘the’ and
‘a’, which provide no information about the actual usage of the word/phrase.

3

5 Key Phrase Extraction Methods

Once we had the clean text files, the next step was to extract all the key-phrases from it.
We began by extracting only the noun phrases from the text files, based on the premise
that most of the times, important phrases occur in the form of noun phrases. However,
due to this, we got an abundance of phrases that were not important with respect to the
text, such as named entities(New York) and lost a lot of phrases(verb phrases, prepo-
sition phrases) that conveyed more information than the extracted noun phrases. For
this reason, we decided to use Semantria for the purpose of key-phrase extraction. For
the government dataset, we got a approximately 80000 phrases while for the Reviews
dataset, we extracted close to 1700000 phrases.

Before testing any methods of phrase representation and clustering, we had to set a
baseline. For that purpose, we picked a subset of 400 phrases and hand clustered those
in order to prepare a human baseline to compare all our methods against. To ensure
that a particular topic did not have too much bias and that each topic had more or less
equal representation in the data, we limited each cluster to about 10 phrases i.e. each
hand-made cluster had 10 similar phrases in it. Thus, the baseline model had 40 hand-
prepared clusters based on human observation. While preparing these clusters, it was
noticed that the phrases extracted from the government dataset were too sparse to cluster
phrases together, which is why this dataset was neglected for all future experiments. The
following table presents an example of the type of phrases that were extracted from the
dataset and the manner in which they were clustered for the baseline.

Table 1: Example clusters for baseline model
Cluster 1 Cluster 2

Short Ribs Quick Coffee giving workers professional massage therapist
Hot Food Sausage patty excellent chef head chef

French Toast Sausage Rounds talented artists primary innkeeper
Cut fruits dried fruits good innkeeper wonderful innkeepers

salad buffet line polite staff accommodating staff

6 Distributed representation of Phrases

After extraction of all the phrases was complete, we had to find a method of representing
the phrases that would keep their linguistic and semantic similarity intact and would
allow clustering using the traditional unsupervised clustering techniques. For this, we
decided to represent phrase as real valued vectors, on which vector algebra operations
could be performed and clustering algorithms such as K-Means could be employed. To
achieve this representation, we tried three different approaches, each of which has been
explained in detail.

6.1 Phrase representation using component words

The intuition behind making use of component words to find the phrase embeddings was
that every phrase can be represented in terms of the words contained in it. There are two
standard ways to represent a word entity given a corpus of text - sparse one-hot encoding
and dense real-valued word embedding. We chose the latter representation of words for
mainly two purposes - compactness and inclusion of context. Word Embeddings using

4

GloVe take the make use of the word-word co-occurrence statistics to prepare word
embeddings, as a result of which words which may occur in similar contexts, such as
synonyms, hypernyms and hyponyms lie close to each other in the embedding space. We
decided to exploit this property of word embeddings to prepare phrase representations
in the following three manners:

6.1.1 Average Embeddings

In our first attempt, we took an average of the embeddings of every word present in
a phrase and assigned the final vector to that phrase as its real-valued representation.
For word embeddings, we used GloVe trained on a common crawl corpus, containing
1900000 words in its vocabulary. Phrases that contained at least one word not present
in the GloVe vocabulary were ignored altogether. After averaging, each phrase had a 300
dimensional phrase embedding, on which the clustering algorithms chosen were applied.
Results were compared with baseline to analyze if averaging word embeddings is a good
way of representing phrases.

6.1.2 Concatenation

Next, instead of averaging the embeddings, we tried to concatenate embeddings of each
component word together. Since each phrase can have a different number of words,
to maintain uniformity, every phrase was assigned a vector of size 4*300, equal to the
resultant concatenated embedding of the longest phrase in the corpus(since the size of
each word embeddings was 300 and the longest phrase had 4 words in it). For phrases
smaller than 4-grams, the remaining space in their embedding vector was padded with
zeros. The resulting phrase embedding clusters were compared with the baseline for
performance analysis.

6.1.3 Pointwise product

Finally, making use of only the component words in the phrase, we took the pointwise
product of each component word embedding to prepare a real-valued representation for
the phrases. This resulted in a 300 dimensional representation of each phrase, on which
clustering was applied and results were analyzed.

6.2 Phrase representation using context

Drawing inspiration from skip-gram models used for preparing word embeddings, we
decided to make use of the context of a phrase in learning phrase embeddings. The
idea was that using context to represent phrases would prepare a distributed space
where phrases occurring in similar contexts would lie close to each other. For this, we
replaced, in the raw text, every phrase with a hyphenated version of it i.e. each phrase
of the form “word1 word2” was replaced with “word1-word2” and plugged back into the
raw text, in place of the original phrase occurrence. This was done so that in counting
the vocabulary of the corpus, each hyphenated phrase would be considered as a separate
unique word in itself. With this modulated text corpus, we prepared a neural network,
similar to the traditional skip-gram model, for learning the embeddings of each word in
the vocabulary of the corpus. Details of the network have been provided below.

6.2.1 Skip-gram Network for Word/Phrase Embeddings

A traditional skip-gram model can be seen in figure 2.

5

Figure 2: Skip-Gram Model as described in [2]

As you can see, the input is a one-hot encoded vector representing a single word and
the output is one-hot encoded vectors of the context words occurring in the selected
window for that input. Typically, the window used is of 4 words, 2 on either side of
the target. The model only consists of a single hidden layer with number of neurons
equal to size of embeddings desired by the user. The network learns embeddings in the
following manner:

First, the weights between input and hidden layer and output and hidden layer are
initialized randomly. This initialization is done uniformly between -1 and 1. Now, in
each epoch(a single forward and backward pass), the network modifies its weights based
on the difference between the calculated output and the actual output(one-hot vector
of context words). Specifically, the cross entropy error between actual and calculated
output is backpropagated using the stochastic gradient descent algorithm[1]. At the end
of several iterations and multiple training examples, weights have finally been learned.
The input-hidden layer weight matrix, which is a V × N matrix, where V is the vo-
cabulary size and N is the size of embeddings required, acts as a look-up table for the
N dimensional embeddings of each word present in the vocabulary. None of the inter-
mediate layers have an activation function. However, the output layer has a softmax
activation function, which can be given as follows:

σ(z)j =
ezj∑K
k=1 e

zk
for j = 1, ...K. (1)

For our case, the network was trained with the available hotel-reviews corpus, with
phrases replaced with hyphenated word pairs and the model was run for a total of
100000 iterations. At the end of training, embedding of each phrase was extracted and
used for clustering. Traditionally, rare words are ignored or replaced with the UNK
token in a skip-gram model. However, in our case, since hyphenated phrases were a rare
occurrence, every word in the vocabulary was treated normally and no UNK tokens were
created.

6

6.3 Phrase representation using both component words and con-
text

Finally, instead of only using the component words or the context of the phrase, we de-
cided to merge the two together and make use of both to prepare the phrase embeddings.
For this, we experimented with the following two models:

6.3.1 Phrase2vec with seeded initialization of skip-gram

In the first model, we replicated the same skip-gram network prepared in the previous
method. However, this time instead of randomly initializing the weight vector, the
initialization was seeded with real valued embeddings for both words and phrases. For
words, the weights were initialized with GloVe embeddings trained on the common-crawl
corpus. For phrases(hyphenated), the weights were initialized with average embeddings,
same as the ones found in section 6.1.1. The ideas behind this was that initializing with
the global embeddings and learning on the local context would pull the embeddings
closer to what each word/phrase represents in the present scenario, which would in turn
improve the quality of information they present.

6.3.2 Feature-rich Compositional Transform

The second method we employed was inspired from [3] and can be seen in figure 3. In

Figure 3: FCT

this method, custom features need to be prepared for every component word in a phrase.
Once the features have been prepared, they are weighted and the final weighted vectors

7

are multiplied with that word’s word embedding. To get the final phrase embedding,
weighted features of all words are multiplied with their distributed representations and
sum of the resultant vectors is calculated. Mathematically, this can be represented as
follows:

ep =

N∑
i

λi � ewi (2)

Here ep is the final phrase embedding, N is the size of the word embeddings, ewi
is the

word embedding of the ith word and λi can be represented as follows:

λij =
∑
k

αjkfk(wi, p) + bij (3)

where λij presents the jth value in the vector λi, fk(wi, p) is the kth feature of word wi

in phrase p and αjk is the weight vector associated with the kth feature. The symbol �
means pointwise product of two vectors.
The method explained above is called Feature-Rich Compositional Transform, due to
the fact it makes use of custom features to transform phrases into their distributed
representations. This method exploits information of both the words contained in the
phrase and the words present in its context. In our implementation of FCT, we used
the following 24 features, as shown in table 2, with only 0 and 1 as permissible values.
Represented densely, these features are - POS tag of current word, POS tag of previous
word, POS tag of next word, sentiment of current word, sentiment of previous word,
sentiment of next word. Each word was represented using these features, which resulted
in the same word having different feature vectors in different contexts. For learning
the embeddings of a word, we simply took the context that occurred first and for every
subsequent occurrence, used the same feature vector, regardless of its context.

Table 2: Features used in implementation of FCT
Is POS tag of word NOUN? Is POS tag of word VERB?

Is POS tag of word ADJECTIVE? Is POS tag of word ADVERB?
Is POS tag of word OTHER? Is POS tag of previous word NOUN?

Is POS tag of previous word VERB? Is POS tag of previous word ADJECTIVE?
Is POS tag of previous word ADVERB? Is POS tag of previous word OTHER?

Is POS tag of next word NOUN? Is POS tag of next word VERB?
Is POS tag of next word ADJECTIVE? Is POS tag of next word ADVERB?

Is POS tag of next word OTHER? Is sentiment of word POSITIVE?
Is sentiment of word NEGATIVE? Is sentiment of word NEUTRAL?

Is sentiment of previous word POSITIVE? Is sentiment of previous word NEGATIVE?
Is sentiment of previous word NEUTRAL? Is sentiment of next word POSITIVE?
Is the sentiment of next word NEGATIVE? Is the sentiment of next word NEUTRAL?

As in the original implementation of FCT, we seeded the word embeddings with GloVe
embeddings, the same as those used in word2vec previously, and learned on these over
several iterations i.e. along with learning the feature weights and biases (α and b), we
also learned the word embeddings. None of the intermediate layer had any activation
function, while the output layer had softmax as the activation function. After 1000000
iterations, the final values of α matrix, b matrix and embeddings were used to calculate
the phrase embedding.

8

7 Rolling Up

Once the embeddings of phrases were prepared using the methods described above,
clustering and theme roll-up were done. For clustering, as mentioned earlier, two main
method were experimented with. We also attempted to roll themes up using the hyper-
nyms and hyponyms of the phrases present in each cluster.

7.1 Clustering

7.1.1 K-Means Clustering

K-Means clustering can be defined in the following three steps:

1. In the space of points to be clustered, initialize K centroids.

2. Compute the distance of each point from each centroid and assign a point to that
cluster whose centroid is closest to it. Do this for every point until preliminary
clusters have been formed.

3. Within each cluster, recompute the centroid and repeat step 2 until clusters stop
changing.

Here, K is the number of clusters that the user wants. The objective of K-Means is to
partition N data points into K clusters in such a manner that the within-cluster sum of
squares or variance is minimized. For our implementation, we made use of scikit-learn’s
available k-means clustering algorithm, with randomly initialized centroids.

7.1.2 Gaussian Clustering

In Gaussian Mixture Model clustering, clusters are modeled with Gaussian distributions,
which means that we make use of a variance along with the mean to define each cluster.
GMM allows for overlapping clusters, with the mixture model being parameterized by
three values - the weight of each cluster, the mean of each cluster and the variance of each
cluster. Probability of belonging to a particular cluster is assigned to each data point
using an algorithm called Expectation-Maximization. Given the number of component
gaussians or clusters (K), this algorithm consists of the following two steps:

1. Expectation: In the first step, the probability of each point belonging to a cluster
Ck is calculated for the current values of weight φk, mean µk and variance σk of
that cluster.

2. Maximization: In this step, the expectation calculated in the previous step is
maximized, by modifying the values of φk, µk and σk.

This iterative model runs until convergence, at which point the maximum likelihood
estimate is provided. Once the model parameters have been estimated, the fitted model
can be used for clustering. A point is assigned that cluster for which the probability of
it belonging to the cluster is maximum.

7.2 Cluster Labelling using Hypernyms and Hyponyms

Hypernym of a word is the superordinate of that word i.e. a word that represents the
broader meaning under which other words with more specific words fall. For example,
“color” is a hypernym for “red”. Similarly, hyponyms are words with a more specific

9

meaning falling under a more general term. For example, “knife” is a hyponym for cut-
lery. For providing a general label to the clusters prepared using the distributed phrase
representations, each phrase present in a cluster, along with its synonyms, hypernyms
and hyponyms was analyzed. Each word of each phrase was checked for synonyms, hy-
pernyms and hyponyms that were in common with other phrases. The idea was to find
an intersection of ideas between multiple phrases in order to determine what the general
type of phrases occurring in a particular cluster were.

In our implementation, we made use of Wordnet, a lexical database of english that
provides users with information such as the synonyms etc. of a word, given the word and
its part-of-speech tag. We chose to use Wordnet as opposed to any other implementation
as it allows sense disambiguation i.e. it distinguishes between same words being used
in different senses. Each phrase was part-of-speech tagged independently i.e. only the
phrase was tagged, regardless of what its context might have been.

8 Experimentation and Results

Each method of phrase embedding extraction was tested with both clustering methods
and the resulting clusters were compared with the hand-made clusters to check how well
each combination of distributed representation-clustering method performed. In each
method, the raw text was normalized, by lowercasing all words before any experimenta-
tion was performed. Number of clusters provided to each algorithm were in the range of
[30,50] i.e. clustering was performed for each of the values in the given range. The range
was decided based on the fact that when preparing hand-made clusters, it was kept in
mind that each cluster will get at most 10 phrases in it, thus giving a total of 40 clus-
ters. However, since the clustering algorithms were both automated, number of phrases
per clusters were not restricted to 10. Due to this, we tested a range of 40 ± 10 when
preparing clusters. The metric used for comparing manual clusters with experimental
results was Cluster Purity, which can be explained as follows:
Given two sets of clusters, Purity is a measure of external evaluation that checks how
pure a cluster is i.e. it checks how many points in a cluster were also present in the same
cluster in the baseline model as well. Formally, we count the number of data points from
the most common class in said cluster, then take the sum over all clusters and divide
by the number of data points. Given, a set of cluster M and a set of classes D both
partitioning N data points, purity can be presented mathematically as:

1

N

∑
m∈M

max
d∈D

| m ∩ d | (4)

The purity for each case i.e. each of the 12 combinations (6 distributed phrase
representation techniques and 2 clustering methods) was computed and it was found
that in general, gaussian mixture models performed marginally better than K-Means
clustering for all the cases. The bar chart below shows average purity of each of the 6
techniques for the case of gaussian mixture model clustering, with purity averaged over
the entire range of clusters.

As can be seen, Average Embeddings performed the best, followed by word2vec with
seeded initialization and FCT. Example clusters for all three have been given in tables
3, 4 and 5. We noticed that in all three best cases, the phrases seemed to be occurring
together because they had common words in them, which was expected since there was
not enough data for the methods to model context of the phrases properly. Another
thing to notice is that methods using both component and context words performed

10

Figure 4: Average Purity for different phrase representations using Gaussian Clustering

better than the other methods that made use of only words or only context(except
average), despite having limited training data.

Table 2: Examples for Average Embeddings
Cluster 1 Cluster 2

Cut fruits living pool
dried fruits room area
Soy Milk parkview room

whole grains morning coffee
fresh fruit dining table

Table 3: Examples for Word2vec with Seeded Initialization
Cluster 1 Cluster 2

big rooms evening drinks
Nice rooms delicious breakfast

Family rooms horrible breakfast - experience
modern amenities Great meal
moldy bathrooms lovely buffet

For labelling the resultant clusters, the hypernyms, hyponyms and synonyms of each
word in each phrase in a cluster were analyzed. However, it was found that hypernyms
and hyponyms did not have enough intersection among the various phrases to single out
a common label for the cluster. It was also observed that more wordnet gave more rel-
evant results when provided with a POS tag as opposed to in absence of one. However,
certain words, with a particular POS tag, were unavailable in wordnet, which made it
difficult to extract hyper/hypo-nyms for each word. Consequently, we abandoned this
approach and focused on better representation of phrases instead.

11

Table 4: Examples for FCT
Cluster 1 Cluster 2

excellent breakfast standard residence
great breakfast queen room

great stay night light
great meal canine guests

terrific breakfast standard vehicles

Conclusions and Future Work

In this project, we attempted several experiments to perform clustering of similar key-
phrases together into groups. Along the process, we realized several things which we
believe were key insights into the problem, that could help future researchers as well.
First, we realized that there is not ‘right answer’ when it comes to similarity of phrases
and clustering similar phrases will depend on the user as well as the cause for which
clustering is being done. For example, for a user only interested in negative reviews of
their hotel, clustering based on sentiment would make more sense, as opposed to the con-
text of the phrase. Second, we realized that a good representation of phrases is almost
as important as the technique of clustering used. Third, through our experiments, we
concluded that for basic clustering of phrases, averaging word embeddings was a good
solution, as long as the number of phrases was limited to a small value. As number of
phrases to be clustered was increased, the phrases occurring in a cluster became more
and more unrelated. We concluded that in our case, Average Embeddings gave a high
purity because the subset of phrases we chose were distinct enough for the average em-
beddings to perform well. On the other hand, for a more logical and generic approach,
using both context and component words of the phrase seems to perform better than
only using context. Looking at the results, we concluded that with sufficient training
data, phrase2vec with seeded initialization might outperform average embeddings and
provide a better quality of embeddings as well. The same is true for FCT as well, which
also gave the additional advantage of preparing custom features. Using these features,
users may fine-tune the basis on which they want the phrases to be clustered. This
would provide the user control over the kind of clusters they want for their usage.

Based on the above conclusions, there are certain steps that may be taken in the future,
to improve the quality of clustering.

• More data may be acquired to train the neural network models better. With the
network seeing more occurrences of the same phrase, it should prepare a better
and more general phrase embedding.

• Features of FCT may be fine-tuned to improve the quality of clusters.

• Also, instead of treating each word occurrence as the same and providing the
same feature vector as that of its first occurrence, average of the embeddings of all
occurrences may also be taken. This means that the same word would be learned
with different feature vectors and at the end of training, different embeddings each
corresponding to the different phrase instances, could be averaged to get a final
phrase embedding.

• For the case of labelling, extracting POS tags by including context of phrases and
using these to extract hypernyms and hyponyms may provide better results as
well.

12

References

[1] Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neuro-
computing, 5(4):185–196, 1993.

[2] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-
tributed representations of words and phrases and their compositionality. In Proceed-
ings of the 26th International Conference on Neural Information Processing Systems,
NIPS’13, pages 3111–3119, USA, 2013. Curran Associates Inc.

[3] Mo Yu and Mark Dredze. Learning composition models for phrase embeddings.
TACL, 3:227–242, 2015.

13

