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Abstract

A real valued representation of lexical en-
tities, based on semantic, grammatical or
syntactic information, is a popular way
to encode information contained in them.
These encoded ‘embeddings’ can then
be used as standalone features for tasks
such as recognizing similar words, creat-
ing word clusters and analyzing parent-
child relationships or act as additional fea-
tures for other NLP tasks. In this sur-
vey, we take a look at the different meth-
ods in which words can be represented as
vectors of real valued elements and how
these methods have evolved over time. We
focus primarily on distributed represen-
tations for words and compare and con-
trast the different popular approaches for
the same. We also discuss certain proper-
ties of distributed representations of words
which make them useful for a wide variety
of NLP tasks.

1 Introduction

The idea of creating word vectors that can cap-
ture information pertaining to similarity of words
stems from psychology, where in 1952, Charles
Osgood first represented words in term of vectors
of numbers that corresponded to human attitudinal
ratings along a seven-point scale. Today, obtain-
ing meaningful representations of lexical entities
such as words, phrases and sentences has become
a major area of research in Natural Language Pro-
cessing. This is primarily because word represen-
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tations that capture semantic and syntactic infor-
mation have been shown to improve the perfor-
mance of models on downstream NLP tasks such
as word-sense disambiguation, language model-
ing, POS tagging and named entity recognition,
in addition to showing massive improvements in
stand-alone tasks such as finding similar words
and concepts in the underlying data.

There are several design choices that can be
made when choosing an appropriate representa-
tion for words in computational natural language
processing tasks. One of the simplest ways is to
simply assign an index to each word in the vo-
cabulary. Such representations can also take the
form of one-hot vectors – which are of a size equal
to the size of the vocabulary and contain zero-
valued elements everywhere except a one-valued
element at the appropriate index of the word. Such
representations have been used to develop several
NLP algorithms. But, owing to the large vocab-
ularies required to learn meaningful models, this
method of representing words quickly becomes a
handicap. The representations begin to get sparser,
while taking increasing amount of memory. In ad-
dition to being undesirably sparse, they also do not
contain any “meaning” or represent the word in
any way other than as a unique identifier.

Another way to represent words is to assign
them low-dimensional integer or real-valued vec-
tors (low-dimensional w.r.t. the vocabulary size).
Such vectors can be dense and avoid all the spar-
sity issues of one-hot vectors. The dimensions
of these vector may be hand-crafted to represent
meaning, or they might be learned from data. This
survey is concerned with such distributed repre-
sentations of words.

In recent years, a lot of research work in natu-
ral language processing is being dedicated to ob-
taining meaningful distributed representations of
words, phrases, and sentences. These representa-



tions, or “embeddings”, have been found to encap-
sulate word meanings – similar or related words
can be found close to each other in the multi-
dimensional embedding space. Naturally, they
have been used in a variety of NLP tasks with great
success and have led to wild improvements over
the older word representations.

In this survey, we’ll discuss how these dis-
tributed representations have evolved over past
few decades, from non-connectionist approaches
to connectionist approaches. Later, we’ll discuss
some properties of such representations which
make them particularly useful for NLP tasks. But
first, it would be beneficial to revisit the local rep-
resentations and their disadvantages.

2 Local Representations

Given an element and a set of values to represent
it with, the simplest way to represent the elements
in a distinct way is to assign a single value to each
element. This can be thought of as a “local rep-
resentation” of the element, since this represen-
tation does not take information from any other
element into account. One of the most popular
techniques of local representation of words, intro-
duced in 1985 and then republished in 1988, was
given by Waltz and Pollack (1988). In this pa-
per, they introduced the idea of "micro-features" to
perform natural language interpretation using con-
nectionist models. These microfeatures were hand
made features that represented quantities that hu-
mans used to make distinctions in the real world.
This included features such as ’second’, ’minute’,
’hour’, ’factory’, ’office’, ’school’ etc. Each con-
cept was represented as a vector, where each posi-
tion in the vector corresponded to a microfeature
and the numerical value at that position quanti-
fied the association of the feature with that con-
cept. These features were defined independently
for each concept and hence had no interaction with
other concepts, thus making them "local" in na-
ture. While this idea of microfeatures was a better
representation for words that a one-hot represen-
tation, it was both labor intensive and subjective
to human knowledge. While these feature repre-
sentations were highly interpretable, creating them
was time consuming and lack of connection be-
tween the different concepts also resulted in loss
of information about the individual concept.

Hinton et al. (1986) discussed the drawbacks
of localist representations and endorsed advan-

tages to using distributed representations, which
changed the course of word representations to-
wards distributed ones. He showed that distributed
representations were better at finding similari-
ties and generalizing relationships, since learn-
ing didn’t start from scratch for every new ele-
ment, as it did in local representations. Today, the
only local representations in use are one-hot en-
codings, and are used as inputs to different neu-
ral network models that make use of these encod-
ings to extract a distributed representation for the
corresponding words. In the next section, we will
discuss more about the distributed representations
and how these methods changed with improve-
ments in technology.

3 Distributed Representations

Hinton et al. (1986) provided the following def-
inition of distributed representations, that is still
relevant today: distributed representations are rep-
resentations of entities in which each entity is rep-
resented by several computing elements and each
element is involved in the representation of sev-
eral entities. These representations are today un-
derstood as an integral part of all connectionist
networks, otherwise known an neural networks.
However, using neural networks for word repre-
sentations was not always a popular mechanism.
In general, distributed representation techniques
can be divided into two categories - connection-
ist approaches and non-connectionist approaches.
Each of these categories is explored in more detail
in the following sections.

3.1 Non-Connectionist Models of Distributed
Representations

Rumelhart et al. (1986) introduced back-
propagation as a potential method of extracting
distributed representations for entities. However,
lack of evidence on how these representations can
capture complex relationships in the underlying
data was still unseen, and researchers sought other
ways of preparing distributed representations for
words, without the use of connectionist models.

3.1.1 Context Vectors
Developing the idea of "micro-features" further,
Gallant (1991) introduced context vectors, that
were defined as vector representations of words
derived from the context of that word and used
these to disambiguate word senses. A major con-
tribution of this paper was the context algorithm,
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which was a technique introduced do allow dy-
namic computation of context vectors for any po-
sition in the text. The paper defined a feature
space consisting of n, manually chosen concepts
that were used to outline contexts. Each word
was defined as a vector, where each position in the
vector belonged to one of the concept words and
the numerical value at the position corresponded
to the association of the word with that concept.
Context vectors for 100000 words were created by
hand, similar to Waltz and Pollack (1988). Figure
1 shows a sample of context vectors prepared for
the different meanings of the same word, "star".
Then, Bootstrapping was used to create dynamic
context vectors, by taking into account both the
dynamic context vector at the end of the previous
sentence and the words present in the current sen-
tence. This algorithm allowed automatic creation
of context vectors, thus eliminating the need for
hand-made representations.

Figure 1: Context Vectors for different meanings
of the word ‘star’. (Gallant, 1991)

Gallant et al. (1992) extended this idea to intro-
duce a system called MatchPlus, that, in addition
to providing representations for word stems, also
made use of these to prepare document and query
vectors in the same representation space, to allow
efficient information retrieval. However, while the
MatchPlus created context vectors derived from
local context information, they ignored any infor-
mation available outside their context window.

Caid et al. (1995) made use of an already pop-
ular technique called Latent Semantic Indexing
(Deerwester et al., 1990), in comparison with
MatchPlus, for the purpose of document retrieval.
Latent Semantic Indexing or LSI prepared a term-
document frequency matrix, where each cell in the
matrix contained information about the number of
times a word had occurred in a document. A ma-
trix factorization technique like SVD was applied
on this term-document matrix and only the top k

largest independent linear components of the ma-
trix were kept. This resulted in k dimensional
document vectors, along with k dimensional word
vectors, that were then used to produce query vec-
tors, for document retrieval.

Each of the methods described above presented
a unique "context vector" for each word in the
document. However, while LSI took only global
or document-level co-occurrence into account,
MatchPlus gave a different representation to dif-
ferent instances of the same word, based on their
different contexts, which made it difficult to com-
pare different concepts, as could be done with
"microfeatures". This created the need for a
method that could provide unique representations
to words, such that different concepts could be
compared with each other.

3.1.2 Word Spaces
Schütze (1993) introduced a method of extract-
ing word representations that exploited the lexi-
cal co-occurrence statistics and allowed a unique
representations for words, by taking all instances
of a word into account. This model, known as
the word space model, prepared a collocation ma-
trix from 5000 popular four-grams and for each
new word, prepared a context vector based on the
co-occurrence of the word with each four-gram,
summed over all instances of the word. This
method had the advantage of being completely au-
tomated and experimental results showed its abil-
ity to perform well on the word sense disambigua-
tion task. Figure 2 shows results for 10 experi-
mental disambiguation tasks, where the columns
indicate success for each sense of the particular
words. It also gave a unique vector for each word
in the document vocabulary, which was an advan-
tage over the context vector approaches. However,
the word representations provided by this model
were not interpretable on their own and the only
information encoded by the model was vector sim-
ilarity - similar words were closer together in the
word space.

Despite the lack of interpretability of word
space models, the idea that similar words should
be close to each other in a vector space soon be-
came popular. Qiu and Frei (1993) carried the idea
of word spaces forward and constructed a simi-
larity thesaurus between words, by taking into ac-
count the information of how often words occur in
particular documents. Each word representation
in this model was a vector of document weights,
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Figure 2: Results for word sense disambiguation
using word space model. (Schütze, 1993)

where the weight of each document were com-
puted with the help of the feature frequency, the
inverse item frequency and maximum feature fre-
quency, features being the documents themselves.
This normalized tf-idf weighted matrix presented
the advantage that if words co-occurred in longer
documents, their assigned similarity would be
lower than if they co-occurred in a shorter docu-
ment. This model took more that just term-term
co-occurrence information into account, as was
done in LSI, and thus provided smarter word rep-
resentations. However, the model was now look-
ing at each word on a document level.

The idea that local co-occurrence is a stronger
indicator of similarity was exploited by Lund and
Burgess (1996) in their HAL (hyperspace ana-
logue to language) method. This method com-
puted co-occurrence statistics, with the strength
of association decaying with distance. A win-
dow of fixed size was passed over the corpus and
for each center word, words lying inside the win-
dow were considered as co-occurring words, with
the strength of co-occurrence decaying with in-
creasing distance. This was extended to the en-
tire corpus and a co-occurrence matrix was pro-
duced. Each axis of the matrix was equal to vo-
cabulary size and the final word vector was a con-
catenation of both row and column corresponding
to a particular word. With these word vectors, the
authors performed several experiments to estab-
lish their nature. They showed that word vectors
exhibited both semantic and associative relation-
ship by analyzing closest neighbors, that the word
vectors contained information that allowed catego-
rization of similar groups, such as animals and hu-
mans etc. and that the semantic distance between
words correlated with human reaction times in a
lexical priming study.

A similar representation was later also used by
Blitzer et al. (2005), where word representations

Figure 3: Examples of the five Nearest Neighbors
to target words using Random Indexing. The num-
bers indicate the degree of correlation to the target
word. (Lund and Burgess, 1996)

were extracted by creating a bigram frequency ma-
trix and computing the normalized frequency for
all words. These normalized vectors acted as pre-
liminary vectors, on which dimensionality reduc-
tion techniques such as PCA and SDE were ap-
plied and the final reduced vectors were used as
word vectors for a statistical language modeling
task.

3.1.3 Random Indexing

Another relatively disparate approach to form-
ing distributed word representations was taken by
Sahlgren (2001). In this paper, the author in-
troduced a method called Random Indexing (RI),
which was inspired by the HAL model (Lund and
Burgess, 1996). In this method, each word was
assigned a sparse random vector called a random
label, which had a small number of randomly dis-
tributed +1s and -1s, with the remaining elements
0. The context vector for each element was com-
puted by adding the labels of all words in the tar-
get’s context window to its own context vector, for
all occurrences of the word. The addition was
weighted, with context words father away from
target getting a smaller weight. This model was
analyzed on a synonym finding task, whose results
were compared with a set of TOEFL solutions, on
which it performance was comparable to LSI. Fig-
ure 3 shows a sample of the nearest neighbors with
associated correlation, which are fairly correlated
to their corresponding targets.

All the methods explained above used non-
connectionist models to extract word representa-
tions from the data. In other words, none of the
models explained above made use of a neural net-
work model to get word vectors. This was mainly
due to lack of evidence regarding the extent to
which information can be learned by neural rep-
resentations. The non-connectionist models pre-
sented several advantages and showed good per-
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Figure 4: Neuron Activation from 24 input units
given to 6 hidden units, corresponding to English
and Italian names. (Rumelhart et al., 1988)

formance on multiple NLP tasks. However, the
models could not be scaled to incorporate the in-
creasing amount of data, since most of them re-
quired the storage of term-term or term-document
frequency statistics. While the context vector
models still required some amount of manual la-
bor, the word space models had large space com-
plexities and only took lexical statistics into ac-
count, thus causing loss of information such as se-
quence of words, subject verb information, part of
speech tags etc. Due to these limitation, neural
network based approaches gained popularity and
have today become the most commonly used mod-
els for extracting distributed representations.

3.2 Connectionist or Neural Network-based
Models of Distributed Representations

The first hint that distributed representations
learned by neural networks can be used as vector
representations for input entities, was provided by
Rumelhart et al. (1988), where the authors intro-
duced back-propagation as a method for learning
weights in a simple two layer feed-forward neural
network. In this paper, the authors showed how
neuron activations corresponding to each input can
be used as their representation. Figure 4 shows
the original image presented in that paper, that
shows how activations for every hidden neuron
can be collected into a vector, and be treated as dis-
tributed representations for an input word. In the
figure, white rectangles show excitatory weights
and black rectangles show inhibitory weights and
sizes represent the weight values.

While the paper presented a novel idea, their
lack of evidence for whether connectionist mod-
els really capture complex structures in data and
whether distributed representations being used by
them are able to learn inherent information in the
data kept researchers from exploring this tech-

nique in more detail. After the introduction of
back-propagation however, many works explored
the above question, in an attempt to establish the
nature of the distributed representations learned by
neural networks. One of the most notable was by
Hinton (1990) in which the he tried to show that
connectionist models that make use of distributed
representations can indeed learn complex struc-
tures by training a network to capture learn part-
whole hierarchies. However, this work did not dis-
cuss the quality of representations themselves.

Elman (1991) analyzed representations learned
by a recurrent neural network, trained to predict
the next word given a previous word for short 2-3
word sentences. The network presented in the pa-
per used an extra hidden layer, which they referred
to as a layer of context units, that stored hidden
layer activations from the previous time step, and
combined these values with the current time step
input, to produce new activations. After training
the model, final representation for each word was
taken as the average of its hidden unit activation
at test time, over all occurrences of the word. The
paper utilized several mechanisms to explore how
the learned distributed representations encode in-
formation about the language and underlying data.
However, while they suggested that performing
hierarchical clustering on the learned representa-
tions resulted in groups of nouns and verbs to-
gether, they performed no further experimentation
to provide proof for whether these representations
could be used as word vectors or not.

After a shift in focus of the wider research com-
munity back to non-connectionist models from
connectionist models, Bengio et al. (2003) re-
introduced neural networks as a force to be reck-
oned with in natural language tasks with their
neural probabilistic language model that jointly
learned a representation for each word and learned
a probability function for word sequences using
these representations, as a solution for the curse of
dimensionality problem encountered when model-
ing language with longer histories. The architec-
ture implemented for this joint learning task has
been shown in figure 5.

In this model, input words from a sentence his-
tory were first converted to fixed dimensional em-
beddings, which were then concatenated and pro-
vided to a hidden layer and optionally, also pro-
vided to the output layer. The hidden layer was
connected to the output layer, whose units rep-
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Figure 5: Architecture used by Bengio et al.
(2003)

resented words in the vocabulary and a softmax
function on the output layer provided a proba-
bilistic output over the next word, given previous
words. The network showed significant improve-
ments in the quality of language modeling as com-
pared to other standard models such as Kneser-
Ney back-off and class-based back-off. However,
while they focused on the learning unique repre-
sentations for each word, they did not explore the
information stored within these ‘embeddings’.

Following the success of Bengio et al. (2003),
a wide variety of connectionist model-based word
embeddings were introduced and studied. Mnih
and Hinton (2007) proposed three probabilistic
models – a factored restricted Boltzmann ma-
chine (RBM) LM, a temporal factored RBM LM,
and a log-bilinear LM – for next-word prediction
task by using distributed representations of words.
The temporal FRBM and the log-bilinear models
showed exceptional performance, especially with
larger context sizes.

Collobert and Weston (2008) made use of a
“lookup table” layer that was essentially a dis-
tributed word representation layer that can be
trained through backpropagation. Their architec-
ture was designed to be trained jointly for sev-
eral different NLP tasks – part-of-speech tagging,
chunking, named-entity recognition, semantic role
labeling, and language modeling – while sharing
weights across these tasks.

Mnih and Hinton (2009) introduced a hierar-
chical log-bilinear model (HLBL) that made use
of hierarchical clustering of words. While hierar-

chical clustering of words using binary trees has
been performed before this work, the authors here
used a pure learning approach. This is benefi-
cial because one no longer needs expert knowl-
edge to generate such trees. A simple method
to achieve this is to use large count vectors to
describe the words, but this is problematic be-
cause of the exponentially large vocabularies en-
countered when training on large dataset and with
larger context sizes. This also leads to a data
sparsity problem that plagued n-gram models as
well. To avoid such issues, the authors used low-
dimensional real-valued word vectors to build the
trees. In this method, the learning of the word rep-
resentations happens in the tree-building process.
A drawback of their method, however, was that it
was not able to learn multiple codes for words with
multiple meanings. Instead, the tree seemed to
replicate infrequent words that were hard to clus-
ter.

A study by Turian et al. (2010) was one of the
first to systematically analyze the usefulness of
word representations in NLP tasks. The authors
sought to compare the performance of near state-
of-the-art supervised baseline models augmented
by three different word representations – Brown
clustering (a class-based bigram LM) (Brown
et al., 1992), Collobert and Weston (2008) em-
beddings, and HLBL embeddings (Mnih and Hin-
ton, 2009). They found all three word represen-
tations improved the performance of the baseline
models. In their experiments, they also found that
word embeddings learned in a semi-supervised
task-specific manner performed better than those
learned in an unsupervised task-inspecific man-
ner. However the unsupervised method results in
word embeddings that can be shared across re-
search studies without need for further training.
The authors also point out a drawback of con-
nectionist model-based word embeddings as com-
pared to something like Brown clustering. The
Brown clustering is able to better represent rare
words, whereas Collobert and Weston (2008) em-
beddings cannot do so since they do not receive
many training updates during backpropagation.

Mikolov et al. (2013a) introduced two new neu-
ral network-based models to generate word em-
beddings (now popular as word2vec embed-
dings). The first model is the continuous bag-
of-words (CBOW) model which tries to predict
a middle word given N words before and after it
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in a sequence. This model simply averages the
word vectors for the context words and then feeds
them to a log-linear classifier to predict the mid-
dle word. The other model, called the continu-
ous Skip-gram model, achieves the opposite of the
CBOW model. Given a middle word, it tries to
predict N words before and after it. The embed-
dings generated were found to have properties be-
yond simple word similarity, which we’ll discuss
in the next section. Given the huge performance
improvements gained by these embeddings, they
marked a dramatic change in the attitude of the
wider research community regarding distributed
word representations.

Mikolov et al. (2013b) introduced negative sam-
pling as an alternative to hierarchical softmax as
used in their Skip-gram model. This is shown to
learn accurate representations for frequent words.
In this work they also discussed how simple lin-
ear operations on the word vectors lead to other
meaningful vectors, and can also be used to repre-
sent groups of words like phrases and sentences –
more on these in the next couple of sections.

Generating word embeddings across multiple
languages was studied by Al-Rfou et al. (2013).
Their findings indicate that it is possible learn em-
beddings over multiple languages jointly. An in-
teresting result from this work is that these jointly
learned embeddings also seem to act as word
translations between languages. For example, the
five nearest neighbors of the French word “rouge”
(“red” in English) are “juane”, “rose”, “blanc”,
“orange”, and “bleu”, while the neighbors for the
English word are the same corresponding trans-
lations of the colors – “yellow”, “pink”, “white”,
“orange”, and “blue”.

Pennington et al. (2014) analyzed the model
properties needed to generate word vectors with
linguistic regularities as described by Mikolov
et al. (2013c). They propose a new global lob-
bilinear regression model that combines matrix
factorization and local window-based methods
to generate Global Vector (GloVe) embeddings.
These embeddings are shown to outperform the
word2vec embeddings from the CBOW and
Skip-gram models (Mikolov et al., 2013a) on word
analogy, word similarity, and named entity recog-
nition tasks.

Most approaches discussed so-far have a com-
mon weakness – they are bad at generating repre-
sentations for infrequent words in the dataset. This

Figure 6: On-the-fly embedding for out-of-
vocabulary word using dictionary definition.
(Bahdanau et al., 2017)

is the natural outcome of depending on data – in-
frequent words will see infrequent updates during
backpropagation. To counter this problem, Bah-
danau et al. (2017) introduced a method to com-
pute word embeddings on-the-fly using auxiliary
data sources. The approach is simple – for infre-
quent or out-of-vocabulary words, one can gen-
erate embeddings using dictionary definitions or
relevant Wikipedia articles. An example is pro-
vided in figure 6. An advantage of creating em-
beddings this way can be seen in action in figure
7. This approach can also be used for generating
embeddings for groups of words or phrases. Such
embeddings can be extremely useful for domain
specific texts and bypasses the need for extremely
large training sets. This approach also allows to
switch the auxiliary sources if dissatisfied with the
results from one.

More recently, Peters et al. (2018) described
a method to generate embeddings from a bidi-
rectional language model. In this approach, em-
beddings are extracted from the hidden states of
a bidirectional language model – one which is
trained using context words from both before and
after the current word. This method of generat-
ing word embeddings is shown to perform well in
capturing different word senses. For example, the
word “play” can be both a noun and a verb.

4 Properties of Distributed Word
Representations

Distributed representations achieve generalization
at a level that n-gram models cannot match and,
depending on the method of derivation, they can
encapsulate several features of natural language.
We have touched upon a few of these properties
in previous sections, and will discuss them here in
more detail.

7



Figure 7: Attention maps of two models – with
dictionary embeddings (left) and without (right) –
in a question answering task. Note how dictionary
embeddings helps in matching “autumn” and “sea-
son”. (Bahdanau et al., 2017)

4.1 Word Similarity

Word similarity is probably the easiest property to
grasp. Similar words will have distributed repre-
sentation vectors close to each other. In a way, this
property exists by definition of distributed word
representations. Typically, one can use words with
very small scalar differences in their vector rep-
resentations interchangeably. Related words can
also be found near each other. Verifying word sim-
ilarity is a common test of the quality of word em-
beddings.

4.2 Word Analogy

Similar to how small scalar differences between
vector representations of two words imply seman-
tic similarity, the vector differences between the
representations also capture certain information of
the words; specifically, the relationship between

Figure 8: Visual representation of linguistic regu-
larities captured by distributed representations of
words. (Mikolov et al., 2013c)

Figure 9: Two-dimensional PCA projection of
word vectors of countries and their capital cities.
Note the near-uniform vector offset between coun-
tries and capitals. (Mikolov et al., 2013b)

the words.
For example, the vector difference between the

vectors for “king” and “queen” is nearly equal to
that between the vectors for “man” and “woman”,
and to that between the vectors for “uncle” and
“aunt”. These regularities can be easily ver-
ified by linear operations on the vectors, for
example, vector(“king”) − vector(“man”) +
vector(“woman”) will give a vector that is ap-
proximately equal to vector(“queen”). This rela-
tion can be visually understood in figure 8.

Another example, as seen in figure 8, is the vec-
tor difference between the vectors for the singu-
lar and plural forms of a word. The vector differ-
ence between “king” and “kings” should be ap-
proximately equal to that between “queen” and
“queens”.

Mikolov et al. (2013b) also present similar re-
lationships that were captured between countries
and their capital cities in their 1000-dimensional
word vectors generated by their Skip-gram model.
Figure 9 shows the relationship using the top two
dimensions as projected by PCA.

Mikolov et al. (2013c) introduced a new evalu-
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ation metric for distributed representations based
on the vector differences of word vectors. They
posit that the quality of a learned distributed repre-
sentation can be measured by the consistency with
which one can retrieve the vector for a word us-
ing linear operations on vectors for other words.
The metric itself is simply a cosine similarity be-
tween the word vector estimated through linear
vector operations and the true word vector. Scor-
ing well on this evaluation metric indicates that the
dimensions of the learned distributed representa-
tions have some meaning.

5 Distributed Representations of
Phrases, Sentences, and Documents

So far, we have discussed the distributed represen-
tations of words. While being incredibly useful,
these can fall short when groups of words in a spe-
cific order can mean different things than the indi-
vidual words themselves. For example, “Air” and
“Canada” are two words present in “Air Canada”,
but the individual words do not represent the air-
lines Air Canada. For this reason, it is useful
to consider distributed representations of phrases,
sentences, and even documents.

One of the earliest representations of documents
and queries can be found in (Gallant et al., 1992),
where the authors make use of learned word con-
text vectors to obtain document representations,
by taking a weighted vector sum of context vec-
tors of all the words contained in the document.
They obtain representations for phrases in the
same manner as documents, by taking weighted
vector sum of all word context vectors present in
the phrase. While this technique provides a way to
represent documents and arbitrary length phrases,
it also maps different entities to the same seman-
tic space. This is a potential drawback, since the
fact that phrases and documents are composed of
words in a given sequence which hold syntactic
information has been completely ignored.

Mikolov et al. (2013b) present a simple method
for finding phrases. Essentially, they rely on co-
occurrence of words, especially when a certain
co-occurrence or ordering is more frequent than
other occurrences of the individual words. Once
phrases are identified, they are treated like a single
word and vectors are generated for them as well.
This improves the results on specific domain re-
lated texts when co-occurrence of words is com-
mon and has special meaning attached to it.

Le and Mikolov (2014) introduced a Paragraph
Vector framework that includes vectors of sen-
tences, paragraphs, and documents, to improve
performance of models that use only word-level
representations. The paragraph vectors are able to
capture the big-picture concepts of the text, and
this mitigates some of the weaknesses of the word-
order independent bag-of-words type of models
that consider only the word-level representations.
Paragraph vectors can be used in a variety of tasks.
For example, in the language modeling task of
predicting the next word given a set of previous
words, including a paragraph vector along with the
given history words can add some context to the
model.

As discussed in an earlier section, the on-the-
fly embedding method from auxiliary data by Bah-
danau et al. (2017) can also be used to for gener-
ating embeddings for phrases and sentences. One
can benefit by using them for named entities with
multiple words like “New York Times” and “Coro-
nation Street”.

6 Conclusion

In this survey, we presented the most popular
techniques of obtaining word representation and
showed how these techniques have evolved with
time. While the choice of word embeddings for
any given NLP task is an open question, it is
beyond doubt that distributed representations of
words, especially those learned in an unsupervised
manner, have the ability to encapsulate several se-
mantic and syntactic features of natural language.
Similar or related words can be found near each
other in the embedding space, and vector differ-
ences between word embeddings can be used in
simple linear vector operations to obtain mean-
ingful solutions to tasks like word analogy. The
improvements brought on by such representations
to existing models are immediate and significant.
Motivated by this impact, many researchers are
studying efficient methods to generate distributed
representations for words, and even characters,
phrases, sentences, and documents. While hav-
ing a rich and long history, as covered in this sur-
vey, there are likely to be many more interesting
discoveries related to distributed representations
awaiting us in the future.
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